

Clavister SG10 Series Getting Started Guide

Clavister AB Sjögatan 6J SE-89160 Örnsköldsvik SWEDEN

Phone: +46-660-299200 Fax: +46-660-12250

www.clavister.com

Published 2010-03-04 Copyright © 2010 Clavister AB

Clavister SG10 Series Getting Started Guide

Published 2010-03-04

Copyright © 2010 Clavister AB

Copyright Notice

This publication, including all photographs, illustrations and software, is protected under international copyright laws, with all rights reserved. Neither this manual, nor any of the material contained herein, may be reproduced without the written consent of Clavister.

Disclaimer

The information in this document is subject to change without notice. Clavister makes no representations or warranties with respect to the contents hereof and specifically disclaims any implied warranties of merchantability or fitness for a particular purpose. Clavister reserves the right to revise this publication and to make changes from time to time in the content hereof without any obligation to notify any person or parties of such revision or changes.

Limitations of Liability

UNDER NO CIRCUMSTANCES SHALL CLAVISTER OR ITS SUPPLIERS BE LIABLE FOR DAMAGES OF ANY CHARACTER (E.G. DAMAGES FOR LOSS OF PROFIT, SOFTWARE RESTORATION, WORK STOPPAGE, LOSS OF SAVED DATA OR ANY OTHER COMMERCIAL DAMAGES OR LOSSES) RESULTING FROM THE APPLICATION OR IMPROPER USE OF THE CLAVISTER PRODUCT OR FAILURE OF THE PRODUCT, EVEN IF CLAVISTER IS INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. FURTHERMORE, CLAVISTER WILL NOT BE LIABLE FOR THIRD-PARTY CLAIMS AGAINST CUSTOMER FOR LOSSES OR DAMAGES. CLAVISTER WILL IN NO EVENT BE LIABLE FOR ANY DAMAGES IN EXCESS OF THE AMOUNT CLAVISTER RECEIVED FROM THE END-USER FOR THE PRODUCT.

Table of Contents

Preface	5
1. Product Overview	7
1.1. Unpacking the Product	7
1.2. Ports and Connectors	9
2. Installation	12
2.1. Installation Guidelines	12
2.2. Console Port Connection	14
2.3. Connecting Power	16
2.4. Resetting to factory defaults	
3. CorePlus Configuration	
3.1. Management Workstation Connection	20
3.2. Web Interface and Wizard Setup	25
3.3. Manual Web Interface Setup	32
3.4. CLI Setup	47
3.5. Troubleshooting Setup	55
3.6. Going Further with CorePlus	57
4. Warranty Service	60
5. Safety Precautions	62
A. Specifications	65
B. Declarations of Conformity	66
C. Vista IP Setup	68
D. Windows 7 IP Setup	70
E. Apple Mac IP Setup	

List of Figures

1.1. An Unpacked Clavister SG10 Series Appliance	8
1.2. Front View of the Clavister SG10 Series	
1.3. SG10 Power and Hardware Status LEDs	
1.4. SG10 Port Status LEDs	
2.1. The SG10 Series RS-232 Console Port	14
2.2. SG10 Power Socket and Reset Button	16

Preface

Target Audience

The target audience for this guide is the administrator who has taken delivery of a packaged Clavister SG10 Series appliance and is setting it up for the first time. The guide takes the user from unpacking and installation of the device through to power-up, including network connections and initial CorePlus configuration.

Text Structure

The text is divided into chapters and subsections. Numbered subsections are shown in the table of contents at the beginning of the document.

Notes to the main text

Special sections of text which the reader should pay special attention to are indicated by icons on the left hand side of the page followed by a short paragraph in italicized text. There are the following types of such sections:

Note

This indicates some piece of information that is an addition to the preceding text. It may concern something that is being emphasised or something that is not obvious or explicitly stated in the preceding text.

Tip

This indicates a piece of non-critical information that is useful to know in certain situations but is not essential reading.

Caution

This indicates where the reader should be careful with their actions as an undesirable situation may result if care is not exercised.

Important

This is an essential point that the reader should read and understand.

Warning

This is essential reading for the user as they should be aware that a serious situation may result if certain actions are taken or not taken.

Text links

Where a "See section" link is provided in the main text, this can be clicked on to take the reader directly to that reference. For example, see Section 3.5, "Troubleshooting Setup".

Web links

Web links included in the document are clickable. For example, http://www.clavister.com.

Chapter 1: Product Overview

- Unpacking the Product, page 7
- Ports and Connectors, page 9

1.1. Unpacking the Product

This section details the unpacking of the SG10 Series appliance. Open the packaging box used for shipping and carefully unpack the contents. The delivered product packaging should contain the following:

- 1. The Clavister SG10 Series appliance.
- 2. An Ethernet cable.
- 3. A RS-232 null-modem cable.
- 4. A Power cord.
- 5. An AC power adapter.
- 6. A CD-ROM containing:
 - Clavister software.
 - · Product documentation in PDF format.

Figure 1.1. An Unpacked Clavister SG10 Series Appliance

Note: Missing items

If any items are missing from your package, please contact your reseller or distributor. All PDF documentation can be freely downloaded from the Clavister website.

End of Life Treatment

The SG10 Series appliance is marked with the European *Waste Electrical and Electronic Equipment* (WEEE) directive symbol which is shown below.

The product and any its parts should not be disposed of with other, general refuse. At end-of-life, they should be given to an appropriate service that deals with such specialist disposal.

1.2. Ports and Connectors

This section is an overview of the SG10 Series product's external design.

Figure 1.2. Front View of the Clavister SG10 Series.

The SG10 features an RS-232 console port on the far left. To the right are 6 Fast Ethernet interface ports which can operate at 10Mb or 100Mb speeds. These ports are referred to by the administrator using logical interface names. The first 4 ports are marked **LAN1** to **LAN4**. The two ports at the right are marked as **AUX**, and **WAN**. These ports fullfill the following functions:

WAN This port should be connected to an external wide area network (in most cases, the Internet). It is 100Base-T or 10Base-T capable. The default CorePlus logical interface name is wan.

AUX This port is also 100Base-T or 10Base-T capable. The default CorePlus logical interface name is **aux**.

LAN 1-4 These ports are general purpose interfaces that connect to the main processor via a switch fabric which is common to all seven ports. All are designed to be connected to internal networks. All 4 ports share a single default logical interface name which is called lan. In other words any rule in the IP rule-set that uses lan as the source or destination interface will apply to traffic on any of the physical ports LAN 1-4.

Ethernet Connection Limitations

With the SG10 Series there is a limit to how many devices can be connected via the ethernet ports. This number is determined by the type of SG10 license purchased and the size of CorePlus ARP table that the license allows.

Changing default interface names

The default logical interface names assigned to physical ports can be changed later by the SG10 Series appliance administrator. In the case of **lan**, changing this name will change the shared name for physical ports

Important

Traffic that enters the SG10 Series by one of the 4 general purpose interfaces **LAN1** to **LAN4** and then leaves by another of those same set of 4 interfaces destined for the same IP subnet, will not be subject to the CorePlus IP rule-set. This is because that traffic will

pass through the SG10 Series internal switch logic and it will be sent directly to the destination interface by the switch.

Power and Status LEDs

The front of the SG10 Series features two LED lights at the left. One is for power, the other indicates CorePlus status. The Power LED should be green when power is applied (see *Section 2.3, "Connecting Power"*). The Status LED is dark during the CorePlus firmware loading sequence and illuminates green when CorePlus is successfully loaded.

Figure 1.3. SG10 Power and Hardware Status LEDs

Port Status LEDs

The front of the SG10 Series has an LED which indicates the status of each port. These lights are either dark or green. Green indicates that the link is established and flashing green indicates traffic on the port.

Figure 1.4. SG10 Port Status LEDs

Chapter 2: Installation

- Installation Guidelines, page 12
- Console Port Connection, page 14
- Connecting Power, page 16
- Resetting to factory defaults, page 18

2.1. Installation Guidelines

Follow these guidelines when installing your Clavister SG10 Series appliance:

Safety

Take notice of the safety guidelines laid out in *Chapter 5, Safety Precautions*. These are specified in multiple languages.

Power

Make sure that the power source circuits are properly grounded, then use the power cord supplied with the appliance to connect it to the power source.

Using Other Power Cords

If your installation requires a different power cord than the one supplied with the appliance, be sure to use a cord displaying the mark of the safety agency that defines the regulations for power cords in your country. Such marks are an assurance that the cord is safe.

Power Overload

Ensure that the appliance does not overload the power circuits, wiring and over-current protection. To determine the possibility of overloading the supply circuits, add together the ampere ratings of all devices installed on the same circuit as the appliance and compare the total with the rating limit for the circuit. The maximum ratings for the SG10 Series are listed in *Appendix A, Specifications*.

Surge Protection

A third party surge protection device should be considered and is strongly recommended as a means to prevent electrical surges reaching the appliance. This is discussed again in *Section 2.3, "Connecting Power"*.

Temperature

Do not install the appliance in an environment where the operating ambient temperature could exceed the specified operating range (see *Appendix A, Specifications*).

The recommended operating temperature range is "room temperature". That is to say, the temperature most commonly found in a modern office and in which humans feel comfortable. This is usually considered to be between 20 and 25 degrees Celcius (68 to 77 degrees Fahrenheit). Special rooms for computer equipment may use a lower range.

Airflow

Make sure that airflow around the sides and back of the appliance is not restricted.

Dust

Do not expose the appliance to environments with elevated dust levels.

Note

Detailed information concerning power supply range, operating temperature range etc. can be found at the end of this publication in **Appendix A, Specifications**.

Flat Surface Installation

The SG10 Series can be mounted on any appropriate stable, flat, level surface that can safely support the weight of the appliance and its attached cables.

Caution: Leave space around the appliance

Please ensure there is adequate space around the appliance for ventilation and access to operating switches and cable connectors. No other objects should be placed on top of the appliance.

2.2. Console Port Connection

The serial console port is a physical RS-232 port on the SG10 Series hardware. This port allows direct management connection to the appliance, either from a separate computer running console emulation software or from a console terminal. Serial console access can then be used for both management of CorePlus with CLI commands or to enter the boot menu in order to access SG10 Series firmware loader options.

Tip: Skip this section for now if the web interface is used

This section can be initially skipped if initial CorePlus setup is done with the CorePlus Web Interface since neither boot menu or CLI access will be needed..

Figure 2.1. The SG10 Series RS-232 Console Port

Issuing CLI Commands

CLI commands can be issued via the RS-232 console port for both initial CorePlus setup as well as for ongoing system administration.

The RS-232 console port need not be used if setup is done through a web browser as described in *Section 3.2, "Web Interface and Wizard Setup"*. If the RS-232 port is used for setup, no password is initially needed and the CLI commands required are described in *Section 3.4, "CLI Setup"*.

Note: Setting a console password

A serial console password need not be set. If this is the case, anyone with physical access to the serial console has full administrator rights.

If the SG10 Series is not placed in a secure area, it is therefore advisable to set the console password. This is done using the console **boot menu** and more detail on this can be found in the **CorePlus Administrators Guide**.

An alternative to using the console port for CLI access is to connect via a physical Ethernet interface and using a Secure Shell (SSH) client on the workstation to issue CLI commands.

Equipment Required for Console Connection

To use the console port, the following is needed:

- A terminal or a computer with a serial port and the ability to emulate a terminal (for instance, the *Hyper Terminal* software included with some Microsoft Windows distributions could be used).
- The terminal console should have the following settings:
 - 9600 bps.
 - No parity.
 - 8 bits.
 - 1 stop bit.
 - No flow control.
- An RS-232 cable with appropriate terminating connectors. The SG10 Series package includes an RS-232 null-modem cable.

Connection Steps

To connect a terminal to the console port, follow these steps:

- 1. Check that the console connection settings are configured as described above.
- 2. Connect one of the connectors on the RS-232 cable supplied, directly to the console port on the SG10 Series.
- 3. Connect the other end of the cable to a console terminal or to the serial connector of a computer running console emulation software.

2.3. Connecting Power

This section describes connecting power. As soon as power is applied, the SG10 Series will boot-up and CorePlus will start.

Important

Please read the advisory information concerning electrical safety in **Chapter 5, Safety Precautions**.

The image below shows the back of the SG10 Series. To the right is the power cord socket. To the left of the socket is a recessed button for resetting the hardware to factory defaults.

Figure 2.2. SG10 Power Socket and Reset Button

Connecting AC Power

To connect power, follow these steps:

- 1. Plug one end of the power adapter's power cord into the power receptacle on the back panel of the SG10 Series.
- 2. Plug the other end of the power cord into a power outlet. There is no On/Off switch so the appliance will boot up immediately and after a brief period of time will be ready for initial connection through either the Web Interface or through the CLI.
 - This initial connection is discussed in depth in Section 3.1, "Management Workstation Connection".
- 3. The SG10 Series will boot up and CorePlus will start. After a brief period of time, the appliance will be ready for connection from a management workstation using either the *Web Interface* or the *Command Line Interface* (CLI) as the management interface.

Important: Protecting Against Power Surges

It is strongly recommended that the purchase and use of a separate surge protection unit from a third party is considered. This is to ensure that computer hardware is

protected from damage by electrical power surges.

Surge protection is particularly important in locations where there is a heightened risk of lightning strikes or where power grid spikes are more common.

Any surge protection unit should be installed exactly according to the manufacturer's instructions since correct installation of such units is vital for them to be effective.

2.4. Resetting to factory defaults

In some unusual cases, it may be necessary to reset the SG10 Series hardware to the state it was in when it left the factory.

The recessed button next to the power inlet on the back of the SG10 Series can be used to reset the SG10 Series to its factory defaults.

To reset to factory defaults:

- 1. The progress of the reset can be followed using a console. If that is required, open a console display connected to the SG10 Series serial RS-232 port.
- 2. Power off the hardware by removing the power cable at the back.
- 3. Push in the reset button with a suitable pointed tip tool.
- 4. Hold the button in and at the same time re-apply power to the appliance.
- 5. Continue holding in the button for at least 30 seconds longer after power is applied.
- 6. If a console was connected in step 1, the console output will now indicate that the hardware has been reset to its factory defaults.
- 7. Release the button and the Clavister Security Gateway can now be configured through the console as though it was brand new.
- 8. If a console password was set this will also be reset to the factory default of no password. If required, the console password should be re-entered to protect the console.

Chapter 3: CorePlus Configuration

- Management Workstation Connection, page 20
- Web Interface and Wizard Setup, page 25
- Manual Web Interface Setup, page 32
- CLI Setup, page 47
- Troubleshooting Setup, page 55
- Going Further with CorePlus, page 57

3.1. Management Workstation Connection

CorePlus Starts after Power Up

It is assumed you have now unpacked, positioned and powered up the SG10 Series unit. If not, you should refer to the earlier chapters in this manual before continuing.

Clavister's CorePlus network security operating system is preloaded on the hardware and will automatically boot up after power is supplied.

The Default Management Interface

After first time startup, CorePlus makes management access available on a predefined Ethernet interface port and assigns the private IP address 192.168.1.1 to it.

For the SG10 Series, the default management interface is any of the **LAN** interfaces since they are connected together by a switch fabric. By convention the first interface, **LAN1**, is normally used for management workstation connection.

Alternative CorePlus Setup Methods

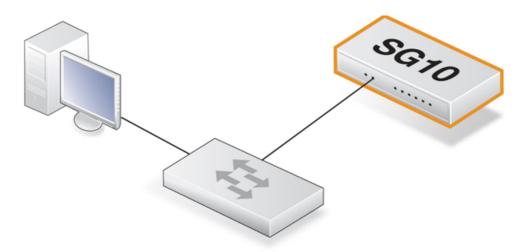
Initial CorePlus software configuration can be done in one of the following ways:

· Through a web browser.

A standard web browser running on a standalone computer (also referred to as the

management workstation) can be used to access the CorePlus Web Interface. This provides an intuitive graphical interface for CorePlus management. When this interface is accessed for the first time, a setup wizard runs automatically to guide a new user through key setup steps. The wizard can be closed if the administrator wishes to go directly to the Web Interface to perform setup manually.

The wizard is recommended for its simplification of initial setup and is described in detail in *Section 3.2, "Web Interface and Wizard Setup"*.


Through a terminal console using CLI commands.

The setup process can alternatively be performed using console CLI commands and this is described in *Section 3.4, "CLI Setup"*. The CLI allows step by step control of setup and should be used by administrators who fully understand both the CLI and setup process.

CLI access can be remote, across a network to a physical interface using a similar connection to that used with the Web Interface. Alternatively, CLI access can be through a console connected directly to the local RS-232 port on the SG10 Series hardware. Direct console connection is described in Section 2.2, "Console Port Connection".

Network Connection Setup

For setup using the Web Interface or the remote CLI, we must first connect a workstation to the SG10 Series across a network as illustrated below.

The designated management interface for the SG10 Series is any of the *LAN* interfaces (although *lan1* is normally used) and this should be connected to the same network as the management workstation (or a network accessible from the workstation via one or more switches). Typically the connection is made via a switch in the network using a regular Ethernet cable.

For connection to the public Internet, another interface should be connected to your ISP and this is referred to below and in the setup wizard as the *WAN* interface. In this manual we will assume that the physical *wan* interface of the SG10 Series is used for Internet connection although it could be any other unused interface.

On the SG10 Series, the physical wan interface is clearly marked and this is intended to be connected to the Internet.

Using Crossover Cables

Connection to the management interface from the workstation can be done directly without a switch. This is usually done by using a crossover cable.

Note: A crossover cable is not necessary for all interfaces

On the SG10 Series, the **LAN** Ethernet ports do not require a crossover cable. Direct connection with a regular cable is possible.

Workstation Interface Setup

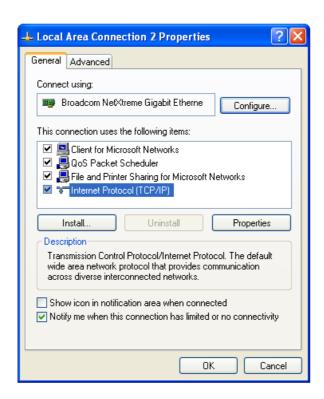
Traffic will be able to flow between the designated workstation interface and the Clavister Security Gateway interface because they are on the same IP network. This means the workstation interface must be first assigned the following static IP addresses:

• IP address: 192.168.1.30

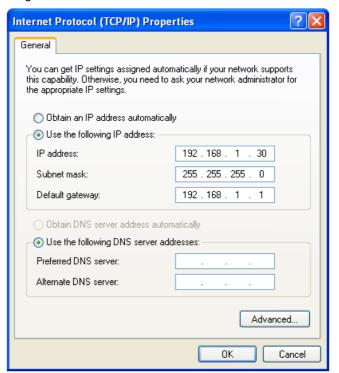
Subnet mask: 255.255.255.0

Default gateway: 192.168.1.1

Tip: Using another interface IP address


The assigned IP address, **192.168.1.30**, could be another address from the **192.168.1.0/24** network as long as it is different from **192.168.1.1** which is the address used by CorePlus on its default management interface.

To enter these settings on a PC running Windows XP, the following steps are needed:


- Click the Start button.
- Right click on My Network Places and select Properties.

- Right click the chosen Ethernet interface and select Properties.
- Select Internet Protocol (TCP/IP) and click Properties.

Enter the IP addresses given above and click OK.

Note: DNS addresses can be entered later

If we want to surf the internet from the management workstation via the security gateway then we can go back to the last step's properties dialog later and enter DNS server IP addresses. For now, they are not required.

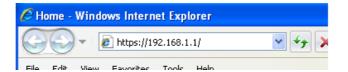
IP Setup on Other Platforms

The following appendicies describe management workstation IP setup for other platforms:

- Appendix C, Vista IP Setup.
- Appendix D, Windows 7 IP Setup.
- Appendix E, Apple Mac IP Setup.

3.2. Web Interface and Wizard Setup

This chapter describes the setup when accessing the CorePlus for the first time through a web browser. The user interface accessed in this way is called the *Web Interface*.



Note: Screenshot images are edited

Many of the screenshots in this section have had sections cut from the original image to aid readability. However, all of the relevant informational content has been preserved.

Connect By Surfing to https://192.168.1.1

Using a web browser (Internet Explorer or Firefox is recommended) enter the address *https://192.168.1.1* into the navigation window as shown below.

Important: Disable any proxy server and turn off popup blocking

Make sure the web browser doesn't have a proxy server configured.

Any popup blocking in the browser should also be temporarily turned off to allow the setup wizard to run.

If there is no response from CorePlus and the reason is not clear, refer to the help checklist in *Section 3.5, "Troubleshooting Setup"*.

The CorePlus Self-signed Certificate

When responding to an https://request, CorePlus sends a self-signed certificate which will not be initially recognised so it will be necessary to tell the browser to accept the certificate for this and future sessions. Different browsers handle this in slightly different ways. In Microsoft Internet Explorer the following error message will be displayed in the browser window.

There is a problem with this website's security certificate.

To continue, tell IE to accept the certificate by clicking the following link which appears near the bottom of the browser window.

In FireFox this procedure is called "Add a security exception".

The Login Dialog


CorePlus will next respond like a web server with the initial login dialog page as shown below.

The available Web Interface language options are selectable at the bottom of this dialog. This defaults to the language set for the browser if CorePlus supports that language.

Logging In and the Setup Wizard

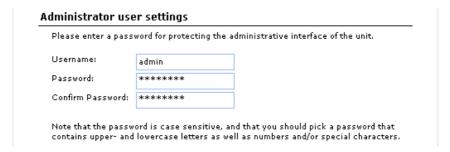
Now login with the username *admin* and the password *admin*. The Web Interface will appear and the CorePlus setup wizard should begin automatically. The first wizard dialog is the wizard welcome screen which should appear as shown below.

Cancelling the Wizard

The setup wizard can be cancelled at any point before the final *Activate* screen and run again by choosing the *Setup Wizard* option from the Web Interface toolbar. Once any configuration changes have been made and activated, either through the wizard, Web Interface or CLI, then the wizard cannot be run since the wizard requires that CorePlus has the factory defaults.

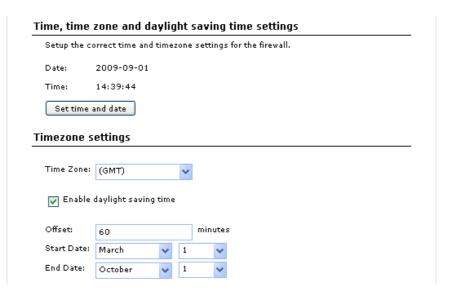
The Wizard Assumes Internet Access will be Configured

The wizard assumes that Internet access will be configured. If this is not the case, for example if the Clavister Security Gateway is being used in *Transparent Mode* between two internal networks, then the configuration setup is best done with individual Web Interface steps or through the CLI instead of through the wizard.


Advantages of the Wizard

The wizard makes setup easier because it automates what would otherwise be a more complex set of individual setup steps. It also reminds you to perform important tasks such as setting the date and time and configuring a log server.

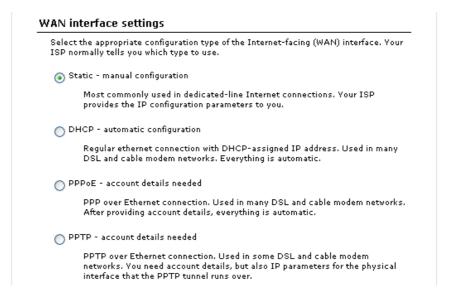
The steps that the wizard goes through after the welcome screen are listed next.


Wizard step 1: Enter a new username and password

You will be prompted to enter a new administration username and password as shown below. It is recommended that this is always done and the new username/password is remembered (if these are forgotten, restoring to factory defaults will restore the original *admin/admin* combination). The password should be composed in a way which makes it difficult to guess.

Wizard step 2: Set the date and time

Many CorePlus functions rely on an accurate date and time, so it is important that this is set correctly in the fields shown below.


Wizard step 3: Select the WAN interface

Next, you will be asked for the WAN interface that will be used to connect to your ISP for Internet access.

Wizard step 4: Select the WAN interface settings

This step selects how the WAN connection to the Internet will function. It can be one of *Manual configuration*, *DHCP*, *PPPoE* or *PPTP* as shown below.

These four different connection options are discussed next in the following subsections **4A** to **4D**.

· 4A. Static - manual configuration

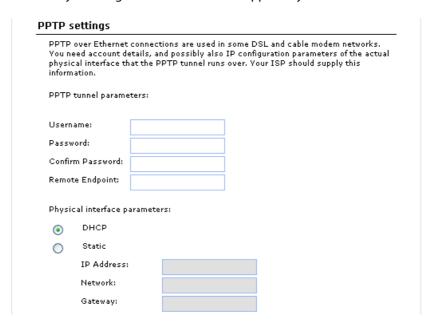
Information supplied by the ISP should be entered in the next wizard screen. All fields need to be entered except for the *Secondary DNS server* field.

	ation is most commonly used in dedicated-line Interne provides this information to you.
IP Address:	
Network:	E.g. 192.168.1.0/24
Gateway:	
Primary DNS server:	
Secondary DNS server:	

· 4B. DHCP - automatic configuration

All required IP addresses will automatically be retrieved from the ISP's DHCP server with this option. No further configuration is required for this so it does not have its own wizard screen.

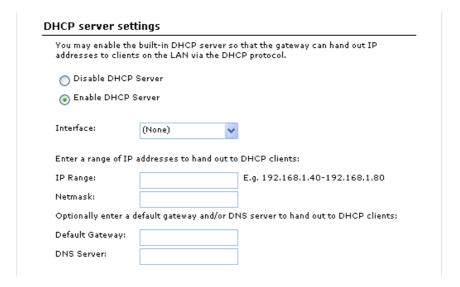
4C. PPPoE settings


The username and password supplied by your ISP for PPPoE connection should be entered. The *Service* field should be left blank unless the ISP supplies a value for it.

DNS servers are set automatically after connection with PPPoE.

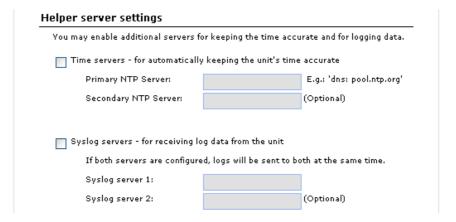
4D. PPTP settings

The username and password supplied by your ISP for PPTP connection should be entered. If DHCP is to be used with the ISP then this should be selected, otherwise *Static* should be selected followed by entering the static IP address supplied by the ISP.



DNS servers are set automatically after connection with PPTP.

Wizard step 5: DHCP server settings


If the Clavister Security Gateway is to function as a DHCP server, it can be enabled here in the wizard on a particular interface or configured later.

The range of IP addresses that can be handed out must be specified in the form *nn.nn.nn.nn* - *nn.nn.nn*. For instance, the private IP address range 192.168.1.50 - 192.168.1.150 might be specified.

Wizard step 6: Helper server settings

Optional NTP and Syslog servers can be enabled here in the wizard or configured later. *Network Time Protocol* servers keep the system date and time accurate. Syslog servers can be used to receive and store log messages sent by CorePlus.

For the default gateway, it is recommended to specify the IP address 192.168.1.1 and the DNS server specified should be the DNS supplied by your ISP.

When specifying a hostname as a server instead of an IP address, the hostname should be prefixed with the string *dns*:. For example, the hostname *host1.company.com* should be entered as *dns:host1.company.com*.

Wizard step 7: Activate setup

The final step is to activate the setup by pressing the *Activate* button. After this step the Web Interface returns to its normal appearance and the administrator can continue to configure the system.

Running the Wizard Again

Once the wizard has been successfully finished and activated, it cannot be run again. The exception to this is if the Clavister Security Gateway has its factory defaults restored in which case the appliance will behave as though it were being started for the first time.

Uploading a License

If the wizard has been run or not, the Web Interface can now be used to upload a valid license to the Clavister Security Gateway. Without a license, CorePlus will run in *demonstration mode* which means that it will cease to function after two hours of operation (restarting the system will re-enable CorePlus for another two hours). The steps for license upload are:

- Using a web browser, surf to the Clavister *Customer Web* (this can be found at https://clientweb.clavister.com) and register for the first time. You will require your Clavister registration key to do this. For the SG10 Series this key can be found written on the label on the underside or back of the appliance. If you are already registered as a customer then you will need to login to the Customer Web.
- The Customer Web system will ask for a MAC address to associate with the Clavister license. This is the hardware Ethernet address associated with one of the Ethernet interfaces on the appliance. On the SG10 Series, the MAC address can also be found written on the label on the underside or back of the hardware.

Alternatively, a MAC address can be read from the output of the *ifstat* CLI command (this can be entered via the serial console).

- Now download a valid .lic license file from the Customer Web to the hard disk of the workstation.
- In the Web Interface menu bar, go to **Maintenance** > **Upgrade** and use the **Browse** button to select the license file, then upload it. As soon as the license is uploaded, demonstration mode will end and CorePlus will be restricted only by the limitations of the license.

3.3. Manual Web Interface Setup

This section describes initial CorePlus configuration performed directly through the Web Interface, without using the setup wizard. Configuration is done as a series of individual steps, giving the administrator more direct control over the process. Even if the wizard is used, this section can also be read as a good introduction to using the Web Interface for configuring key aspects of CorePlus.

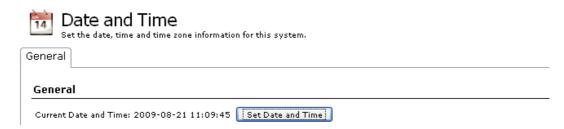
Ethernet Interfaces

The physical connection of external networks to the Clavister Security Gateway is through the various *Ethernet interfaces* which are provided by the hardware platform. On first-time startup, CorePlus scans for these interfaces and determines which are available and allocates their names. The first interface detected in the scan always becomes the initial default management interface and this cannot be changed beforehand.

All CorePlus interfaces are logically equal for CorePlus and although their physical capabilities may be different, any interface can perform any logical function. The SG10 Series interfaces have descriptive names such as *LAN* (for local, protected networks) and *WAN* (for Internet connection) to indicate their intended use. The *LAN1* interface should be used as the management interface.

The Navigation Tree

The Web Interface presents the various components of CorePlus in a tree structure in the left-hand pane of the browser window.


By clicking on the navigation tree we can expand its nodes to examine and change the properties of the various *settings*, *objects* and *rules* that make up a CorePlus configuration. A simple example of changing a configuration is discussed next.

Setting the Date and Time

Many CorePlus functions rely on an accurate date and time, so it is important that this is set correctly. To do this, open the *System* node in the navigation tree.

If we now click on the *Date and Time* node in the tree, the properties of the current date and time settings will appear in the central panel of the Web Interface.

By pressing the **Set Date and Time** button, a dialog appears that allows the exact time to be set.

A **Network Time Protocol** (NTP) servers can optionally be configured to maintain the accuracy of the system date and time and this will require public Internet access. Enabling this option is strongly recommended since it ensures the accuracy of the date and time. A typical NTP setup is shown below.

Note: The time server URL requires the "dns:" prefix

When specifying a URL in CorePlus for the time server, the URL must have the prefix "dns:".

Once the values are set correctly, we can press the **OK** button to save the values while we move on to more steps in CorePlus configuration. Although changed values like this are saved by CorePlus, they do not become active until the entire saved configuration becomes the current and active configuration. We will look at how to do this next.

Activating Configuration Changes

To activate any CorePlus configuration changes made so far, we need to select the **Save and Activate** option from the **Configuration** menu (this process is also sometimes referred to as *deploying* a configuration).

A dialog is then presented to confirm that the new configuration is to become the running configuration.

Save and Activate

Are you sure you want to save the configuration?

An administrator needs to log in within 30 seconds to verify the new configuration. Otherwise the unit will assume that you accidentally locked yourself out, and revert to its previous configuration.

After clicking **OK**, CorePlus *reconfiguration* will take place and, after a short delay, the Web Interface will try and connect again to the security gateway.

Save and Activate

Saving configuration, please wait...

If no reconnection is detected by CorePlus within 30 seconds (this length of time is a setting that can be changed) then CorePlus will revert back to the original configuration. This is to ensure that the new configuration does not accidentally lock out the administrator. After reconfiguration and successful reconnection, a success message is displayed indicating successful reconfiguration.

Commit changes

Configuration successfully activated and committed.

Reconfiguration is a process that the CorePlus administrator may initiate often. Normally, reconfiguration takes a brief amount of time and causes only a slight delay in traffic throughput. Active user connections through the Clavister Security Gateway should rarely be lost.

Tip: How frequently to commit changes

It is up to the administrator to decide how many changes to make before activating a new configuration. Sometimes, activating configuration changes in small batches can be appropriate in order to check that a small set of changes work as planned.

However, it is not advisable to leave changes uncommited for long periods of time, such as overnight, since any system outage will result in these edits being lost.

Automatic Logout

If there is no activity through the Web Interface for a period of time (the default is 15 minutes), CorePlus will automatically log the user out. If they log back in through the same web browser session then they will return to the point they were at before the logout occurred and no saved (but not yet activated) changes are lost.

Setting Up Internet Access

Next, we shall look at how to set up public Internet access. The setup wizard described in the previous chapter, provides the following four options:

- A. Static manual configuration.
- B. DHCP automatic configuration.
- C. PPPoE setup
- D. PPTP setup

The individual manual steps to configure these connection alternatives with the Web Interface are discussed next.

A. Static - manual configuration

Manual configuration means that there will be a direct connection to the ISP and all the relevant IP addresses for the connecting interface are fixed values provided by the ISP which are entered into CorePlus manually.

Note: The interface DHCP option should be disabled

For static configuration of the Internet connection, the DHCP option must be disabled (the default) in the properties of the interface that will connect to the ISP.

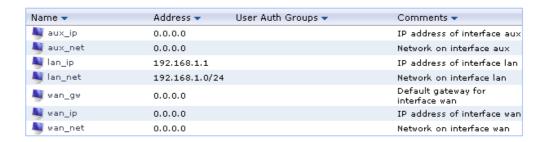
The initial step is to set up a number of IP address objects in the CorePlus *Address Book*. Let us assume for this section that the physical interface used for Internet connection is *wan*, the static IP address for this interface is to be 10.5.4.35, the ISP's gateway IP address is 10.5.4.1, and the network to which they both belong is 10.5.4.0/24.

Note: Private IP addresses are used for example only

Each installation's IP addresses will be different from these IP addresses but they are used here only to illustrate how setup is done. Also, these addresses are private IP addresses and in reality an ISP would use public IP addresses instead.

Let's now add the gateway *IP4 Address* object which we will call wan_gw and assign it the IP address 10.5.4.1. The ISP's gateway is the first router hop towards the public Internet from the Clavister Security Gateway. Go to **System > Objects > Address Book** in the Web Interface navigation tree.

The current contents of the address book will be listed and will contain a number of predefined objects created by CorePlus after it scans the interfaces for the first time. The screenshot below shows the initial address book for the SG10 Series.

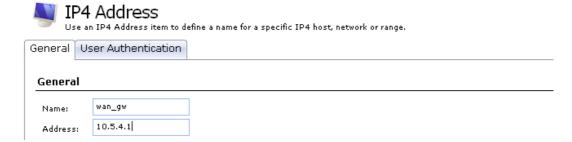

Name ▼	Address 🕶	User Auth Groups 🕶	Comments ▼
💐 all-nets	0.0.0.0/0		All possible networks
👣 InterfaceAddresses			
🦈 localhost	127.0.0.1 (127.0.0.2)		Localhost, for non-management High Availability cluster interfaces

Note: The all-nets address

The IP address object **all-nets** is a wildcard address that should never be changed and can be used in many types of CorePlus rules to refer to any IP address or network range.

All the interface related address objects are gathered together in an *address book folder* called *InterfaceAddresses*. By clicking on this folder, we open it and can view the addresses it contains. The initial contents of the folder are shown below.

By default on initial startup, two IP address objects are create automatically for each interface detected by CorePlus. One IP address object is named by combining the physical interface name with the suffix *ip* and this is used for the IP address assigned to that interface. The other address object is named by combining the interface name with the suffix *net* and this is the network to which the interface belongs.


Tip: Creating address book folders

New folders can be created when needed and provide a convenient way to group together related IP address objects. The folder name can be chosen to indicate the folder's contents.

Now click the **Add** button at the top left of the list and choose the *IP4 Address* option to add a new address to the folder.

Enter the details of the object into the properties fields for the IP4 Address. Below, we have entered the IP address 10.5.4.1 for the address object called wan_gw. This is the IP of the ISP's router which acts as the gateway to the Internet.

Click the **OK** button to save the values entered.

Then set up wan_ip to be 10.5.4.35. This is the IP address of the wan interface which will connect to the ISP's gateway.

Lastly, set the IP4 Address object wan_net to be 10.5.4.0/24. Both wan_ip and wan_gw must belong to this network in order for the interface to communicate with the ISP.

Together, these 3 IP address objects will be used to configure the interface connected to the Internet which in this example is wan. Select **Interfaces > Ethernet** in the navigation tree to display a list of the physical interfaces.

Click on the interface in the list which is to be connected to the Internet. The properties for this interface will now appear and the relevant settings can be entered or changed.

Press **OK** to save the changes. Although changes are remembered by CorePlus, the changed configuration is not yet activated and won't be activated until CorePlus is told to activate the changed configuration.

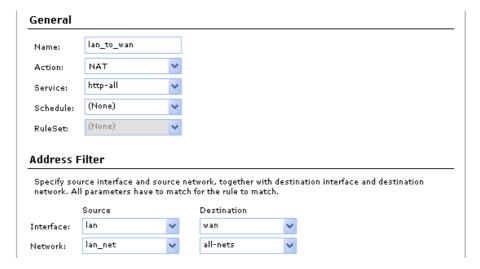
Remember that DHCP should **not** be enabled when using static IP addresses and also that the IP address of the *Default Gateway* (which is the ISP's router) **must** be specified. As explained in more detail later, specifying the *Default Gateway* also has the additional effect of automatically adding a route for the gateway in the CorePlus routing table.

At this point, the connection to the Internet is configured but no traffic can flow to or from the Internet since all traffic needs a minimum of the following two CorePlus configuration objects to exist before it can flow through the Clavister Security Gateway:

- An *IP rule* defined in a CorePlus *IP rule set* that explicitly allows traffic to flow from a given source network and source interface to a given destination network and destination interface.
- A *route* defined in a CorePlus routing table which specifies on which interface CorePlus can find the traffic's destination IP address.

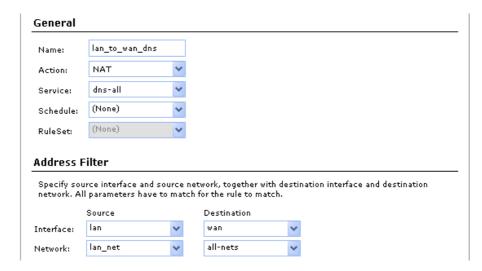
If multiple matching routes are found, CorePlus uses the route that has the smallest (in other words, the narrowest) IP range.

We must therefore first define an IP rule that will allow traffic from a designated source interface and source network. In this case let us assume we want to allow web surfers on the internal network *lan_net* connected to the interface *lan* to be able to access the public Internet.


To do this, we first go to **Rules > IP Rule Sets > main** in the navigation tree.

The empty main IP rule set will now appear. Press the **Add** button at the top left and select **IP Rule** from the menu.

The properties for the new IP rule will appear. In this example, we will call the rule <code>lan_to_wan</code>. The rule <code>Action</code> is set to <code>NAT</code> (this is explained further below) and the <code>Service</code> is set to <code>http-all</code> which is suitable for most web surfing (it allows both HTTP and HTTPS connections). The interface and network for the source and destinations are defined in the <code>Address Filter</code> section of the rule.


The destination network in the IP rule is specified as the predefined IP4 Address object *all-nets*. This is used since we don't know to which IP address the web surfing will be done and this allows surfing to any IP address. IP rules are processed in a top down fashion, with the first matching rule being obeyed. An *all-nets* rule like this should be placed towards the bottom of the rule set since other rules with narrower destination addreses should trigger before it does.

Only one rule is needed since any traffic controlled by a *NAT* rule will be controlled by the CorePlus *state engine*. This means that the rule will allow *connections* that originate from the source network/destination and also implicitly allow any returning traffic that results from those connections.

In the above, we selected the service called <code>http_all</code> which is already defined in CorePlus. It is advisable to make the service in an IP rule as restrictive as possible to provide the best security possible. Custom service objects can be created and new service objects can be created which are combinations of existing services.

We could have specified the rule *Action* to be *Allow*, but only if all the hosts on the protected local network have public IP addresses. By using *NAT*, CorePlus will use the destination interface's IP address as the source IP. This means that external hosts will send their responses back to the interface IP and CorePlus will automatically direct the traffic back to the originating local host. Only the outgoing interface therefore needs to have a public IP address and the internal network topology is hidden.

To allow web surfing, DNS lookup also needs to be allowed in order to resolve URLs into IP addresses. The service <code>http_all</code> does not include the <code>DNS</code> protocol so we need a similar IP rule that allows this. This could be done with one IP rule that uses a custom service which combines the <code>HTTP</code> and <code>DNS</code> protocols but the recommended method is to create an entirely new IP rule that mirrors the above rule but specifies the service as <code>dns-all</code>. This method provides the most clarity when the configuration is examined for any problems. The screenshot below shows a new rule called <code>lan_to_wan_dns</code> being created to allow DNS.

This IP rule also specifies that the action for DNS requests is *NAT* so all DNS request traffic is sent out by CorePlus with the outgoing interface's IP address as the source IP.

For the Internet connection to work, we also need a *route* defined so that CorePlus knows on which interface the web surfing traffic should leave the Clavister Security Gateway. This route will define the interface where the network *all-nets* (in other words, any network) will be found. If we open the default *main* routing table by going to **Routing > Routing Tables > Main** in the navigation tree, the route needed should appear as below.

This required *all-nets* route is, in fact, added automatically after specifing the *Default Gateway* for a particular Ethernet interface which we did earlier after setting up the required IP4 Address objects.

Note: Disabling automatic route generation

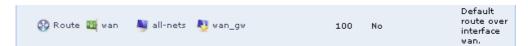
Automatic route generation is enabled and disabled with the setting "Automatically add a default route for this interface using the given default gateway" which can be found in the properties of the interface.

As part of the setup, it is also recommended that at least one DNS server is also defined in CorePlus. This DSN server or servers (a maximum of three can be configured) will be used when CorePlus itself needs to resolve URLs which is the case when a URL is specified in a configuration instead of an IP address. Let's assume an IP address object called *wan_dns1* has already been defined in the address book which is the IP address for the first DNS server. By choosing **System** > **DNS** in the navigation tree, the DNS server dialog will open and this object from the address book can be assigned as the first server.

B. DHCP - automatic configuration

All the required IP addresses for Internet connection can, alternatively, be automatically retrieved from an ISP's DHCP server by enabling the **DHCP Client** option for the interface connected to the ISP. We enable this option by first selecting **Ethernet** > **Interfaces** in the navigation tree to display a list of all the interfaces.

Click the wan interface in the list to display its properties.



In the above screenshot, DHCP is enabled for this interface and this is the required setting if IP addresses are to be retrieved automatically. Usually, a DHCP *Host Name* does not need to be specified but can sometimes be used by an ISP to uniquely identify this Clavister Security Gateway as a particular DHCP client to the ISP's DHCP server.

On connection to the ISP, all required IP addresses are retrieved automatically from the ISP via DHCP and CorePlus automatically sets the relevant address objects in the address book with this information.

For CorePlus to know on which interface to find the public Internet, a *route* has to be added to the *main* CorePlus routing table which specifies that the network *all-nets* can be found on the interface connected to the ISP and this route must also have the correct *Default Gateway* IP address specified. This *all-nets* route is added automatically by CorePlus during the DHCP address retrieval process.

If we examine the routing table we can see this automatically created route and its wan_ip icon will have a yellow star over it to indicate that it was allocated by a DNS server.

After all IP addresses are set via DHCP and an *all-nets* route is added, the connection to the Internet is configured but no traffic can flow to or from the Internet since there is no IP rule defined that allows it. As was done in the previous option (**A**) above, we must therefore define an IP rule that will allow traffic from a designated source interface and source network. (in this example, the network *lan_net* and interface *lan*) to flow to the destination network *all-nets* and the destination interface *wan*.

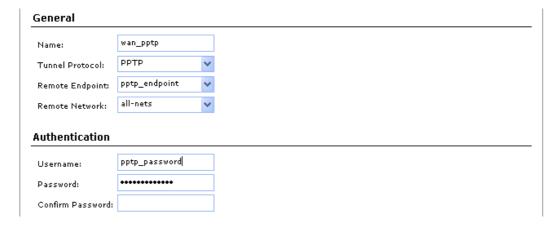
C. PPPoE setup

For PPPoE connection, we must create a PPPoE tunnel interface associated with the physical Ethernet interface. Assume that the physical interface is *wan* and the PPPoE tunnel object created is called *wan_pppoe*. Go to **Interfaces** > **PPPoE** in the navigation tree and select **Add** > **PPPoE Tunnel**. These values can now be entered into the PPPoE Tunnel properties dialog.

Your ISP will supply the correct values for *pppoe_username* and *pppoe_password* in the dialog above.

The PPPoE tunnel interface can now be treated exactly like a physical interface by the policies defined in CorePlus rule sets.

There also has to be a route associated with the PPPoE tunnel to allow traffic to flow through it, and this is automatically created in the *main* routing table when the tunnel is defined. If we go to **Routing > Routing Tables > Main** in the navigation tree we can see this route.



If the PPPoE tunnel object is deleted, this route is also automatically deleted.

At this point, no traffic can flow through the tunnel since there is no IP rule defined that allows it. As was done in option **A** above, we must define an IP rule that will allow traffic from a designated source interface and source network (in this example, the network *lan_net* and interface *lan*) to flow to the destination network *all-nets* and the destination interface which is the PPPoE tunnel we have defined.

D. PPTP setup

For PPTP connections, a PPTP client tunnel interface object needs to be created. Let us assume that the PPTP tunnel will be called *wan_pptp* with a a remote endpoint *10.5.4.1* which has been defined as the IP4 Address object *pptp_endpoint*. Go to **Interfaces > PPTP/L2TP Clients** in the navigation tree and select **Add > PPTP/L2TP Client**. The values can now be entered into the properties dialog and the *PPTP* option should be selected.

Your ISP will supply the correct values for *pptp_username*, *pptp_password* and the remote endpoint. An interface is not specified when defining the tunnel because this is determined by CorePlus looking up the *Remote Endpoint* IP address in its routing tables.

The PPTP client tunnel interface can now be treated exactly like a physical interface by the policies defined in CorePlus rule sets.

There also has to be an associated route with the PPTP tunnel to allow traffic to flow through it, and this is automatically created in the *main* routing table when the tunnel is defined. The destination network for this route is the *Remote Network* specified for the tunnel and for the public Internet this should be *all-nets*.

If we go to **Routing > Routing Tables > Main** in the navigation tree we can see this route.

If the PPTP tunnel object is deleted, this route is also automatically deleted.

At this point, no traffic can flow through the tunnel since there is no IP rule defined that allows it. As was done in option **A** above, we must define an IP rule that will allow traffic from a designated source network and source interface (in this example, the network *lan_net* and interface *lan*) to flow to the destination network *all-nets* and the destination interface which is the PPTP tunnel that we have defined.

DHCP Server Setup

If the Clavister Security Gateway is to act as a DHCP server then this can be set up in the following way:

First create an IP4 Address object which defines the address range to be handed out. Here, we will assume this is called *dhcp_range*. We will also assume that an IP4 Address object *dhcp_netmask* has been created which specifies the netmask.

We now create a DHCP server object called *dhcp_lan* which will only be available only on the *lan* interface. To do this, go to **System > DHCP > DHCP Servers** and select **Add > DHCP Server**. We can now specify the server properties.

In addition it is important to specify the *Default gateway* for the server. This will be handed out to DHCP clients on the internal networks so that they know where to find the public Internet. The default gateway is always the IP address of the interface on which the DHCP server is configured. In this case, *lan_ip*.

Also in the **Options** tab, we should specify the DNS address which is handed out with DHCP leases. This could be set, for example, to be the IP address object *dns1_address*.

Syslog Server Setup

Although logging may be enabled, no log messages are captured unless at least one log server is set up to receive them and this is configured in CorePlus. *Syslog* is one of the most common server types.

First we create an IP4 Address object called, for example, <code>syslog_ip</code> which is set to the IP address of the server. We then configure the sending of log messages to a Syslog server from CorePlus by selecting <code>System > Log</code> and <code>Event Receivers</code> from the navigation tree and then choosing <code>Add > Syslog Receiver</code>.

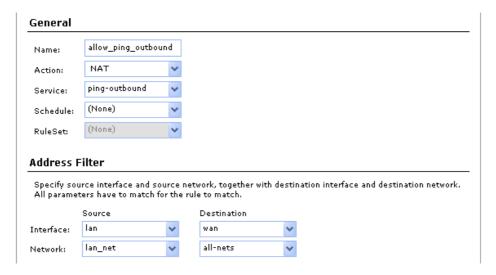
The syslog server properties dialog will now appear. We give the server a name, for example my_syslog, and specify its IP address as the syslog_ip object.

Tip: Address book object naming

The CorePlus address book is organized alphabetically so when choosing names for IP address objects it is best to have the descriptive part of the name first. In this case, use **syslog_ip** as the name and not **ip_syslog**.

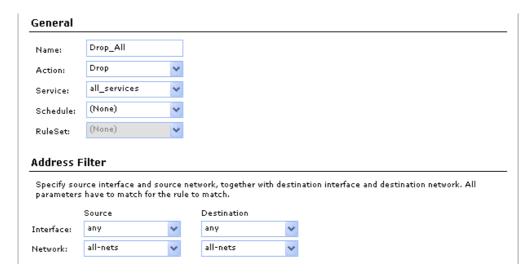
Allowing ICMP Ping Requests

As a further example of setting up IP rules, it can be very useful to allow ICMP *Ping* requests to flow through the Clavister Security Gateway. As discussed earlier, the CorePlus will drop any traffic unless an IP rule explicitly allows it. Let us suppose that we wish to allow the pinging of external hosts with the ICMP protocol by computers on the internal *lan_net* network.


There can be several rule sets defined in CorePlus but there is only one rule set defined by default and this is called *main*. To add a rule to it, first select **Rules > IP Rule Sets > main** from the navigation tree.

The main rule set list contents are now displayed. Press the **Add** button and select **IP Rule**.

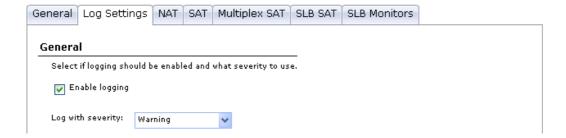
The properties for a new IP rule will appear and we can add a rule, in this case called *allow_ping_outbound*.


The IP rule again has the *NAT* action and this is necessary if the protected local hosts have private IP addresses. The ICMP requests will be sent out from the Clavister Security Gateway with the IP address of the interface connected to the ISP as the source interface. Responding hosts will send back ICMP repsonses to this single IP and CorePlus will then forward the response to the correct private IP address.

Adding a Drop All Rule

The top-down nature of the IP rule set scanning has already been discussed earlier. If **no** matching IP rule is found for a new connection then the *default rule* is triggered. This rule is hidden and cannot be changed and its action is to drop all such traffic as well as generate a log message for the drop.

In order to gain control over the logging of dropped traffic, it is recommended to create a drop all rule as the last rule in the *main* IP rule set. This rule has an *Action* of *Drop* with the source and destination network set to *all-nets* and the source and destination interface set to *any*.

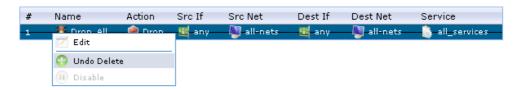

The service for this rule must also be specified and this should be set to *all_services* in order to capture all types of traffic.

If the this rule us the only one defined, displaying the main IP rule set will be as shown below.


Logging can now be enabled on this rule with the desired severity. Click the **Log Settings** tab, and click the **Enable logging** box. All log messages generated by this rule will be given the selected severity and which will appear in the text of the log messages. It is up to the administrator to choose the severity and depends on how they would like to classify the messages.

Deleting Configuration Objects

If information is deleted from a configuration during editing then these deletes are indicated by a line scored through the list entry while the configuration is still not yet activated. The deleted entry only disappears completely when the changes are activated.


For example, we can delete the drop all IP rule created in the previous paragraph by right clicking the rule and selecting *Delete* in the context menu.

The rule now appears with a line scored through it.

We can reverse the delete by right clicking the rule again and choosing *Undo Delete*.

Uploading a License

Without a valid license loaded, CorePlus operates in *demonstration mode* which means it will cease operations after 2 hours from startup. To remove this restriction, a valid license must be uploaded to the Clavister Security Gateway.

To do this, download a license as described in the last part of *Section 3.2, "Web Interface and Wizard Setup"*. This license can then be uploaded directly to CorePlus by selecting the **License** option from the **Maintenance** menu and then pressing the **Upload** button.

Now press the **Browse** button to select the file from the load file system and then the **Upload License** button to send it to CorePlus.

As soon as upload of the license is complete, the 2 hour restriction will be removed and CorePlus will be restricted only by the restrictions of the license.

3.4. CLI Setup

This chapter describes the setup steps using CLI commands instead of the setup wizard.

The CLI is accessible in two ways:

• Across the local network at default IP address 192.168.1.1 using an SSH (Secure Shell) client. The network connection setup is the same as that described in Section 3.2, "Web Interface and Wizard Setup" as is the way the workstation interface's static IP address must be set up so it is on the same network as the Clavister Security Gateway's interface.

If there is a problem with workstation connection, a help checklist can be found in Section 3.5, "Troubleshooting Setup".

• Using a terminal or computer running a console emulator connected directly to the local RS-232 console port on the SG10 Series. Performing console port connection is described in the hardware installation manual for each Clavister hardware model.

The CLI commands listed below are grouped so that they mirror the options available in the setup wizard.

Confirming the Connection

Once connection is made to the CLI, pressing the **Enter** key will cause CorePlus to respond. The response will be a normal CLI prompt if connecting locally through the RS-232 console port and a username/password combination will not be required (a password for this console can be set later).

Device:/>

If connecting remotely through an SSH (Secure Shell) client, an administration username/password must first be entered and the initial default values for these are username *admin* and password *admin*. When these are accepted by CorePlus, a normal CLI prompt will appear and CLI commands can be entered.

Changing the Password

To change the administration username or password, use the *set* command to change the current CLI object category (sometimes referred to as the *object context*) to be the *LocalUserDatabase* called *AdminUsers*.

Device:/> cc LocalUserDatabase AdminUsers

Device:/AdminUsers>

Tip: Using tab completion with the CLI

The tab key can be pressed at any time so that CorePlus gives a list of possible options in a command.

Now set the username/password, which are case sensitive, to be the new chosen values for the user called *admin*. In the example below, we change to the username *new_name* and password *new_pass*.

Device:/AdminUsers> set User Admin Name=new_name Password=new_pass

The new username/password combination should be remembered and the password should be composed in a way which makes it difficult to guess. The next step is to return the CLI to the default top level of object categories.

```
Device:/AdminUsers> cc
Device:/>
```

Setting the Date and Time

Many CorePlus functions rely on an accurate date and time, so it is important that this is set correctly using the *time* command. A typical usage might be:

```
Device:/> time -set 2008-06-24 14:43:00
```

Notice that the date is entered in *yyyy-mm-dd* format and the time is stated in 24 hour *hh:mm:ss* format.

Ethernet Interfaces

The connection of external networks to the Clavister Security Gateway is via the various *Ethernet interfaces* which are provided by the hardware platform. On first-time startup, CorePlus scans for these interfaces and determines which are available and allocates their names. The first interface detected in the scan always becomes the initial default management interface and this cannot be changed beforehand.

All CorePlus interfaces are logically equal for CorePlus and although their physical capabilities may be different, any interface can perform any logical function. The SG10 Series interfaces have descriptive names such as *LAN* (for local, protected networks) and *WAN* (for Internet connection) to indicate their intended use. The *LAN* interface should be used as the management interface. All the *LAN* interfaces are connected together by a switch fabric and any can be therefore be used for this purpose.

Setting Up Internet Access

Next, we shall look at how to set up public Internet access with the CLI. The setup wizard described previously, provides the following four options:

- A. Static manual configuration.
- **B. DHCP automatic configuration.**
- C. PPPoE setup.
- D. PPTP setup.

The individual manual steps to configure these connection alternatives with the CLI are discussed next.

A. Static - manual configuration

We first must set or create a number of IP address objects. It's assumed here that the interface used for Internet connection is *wan*, the ISP gateway IP address is 10.5.4.1, the IP address for the connecting interface will be 10.5.4.35 and the network to which they belong is 10.5.4.0/24.

Note: Private IP addresses are used for example only

Each installation's IP addresses will be different from these IP addresses but they are used here only to illustrate how setup is done. Also, these addresses are private IP addresses and in reality an ISP would use public IP addresses instead.

We first add the gateway IP address object which we will call wan_gw:

```
Device:/> add Address IP4Address wan_gw Address=10.5.4.1
```

This is the address of the ISP's gateway which is the first router hop towards the public Internet. If this IP object already exists, it can be given the IP address with the command:

```
Device:/> set Address IP4Address wan_gw Address=10.5.4.1
```

Now use this object to set the gateway on the wan interface which is connected to the ISP:

```
Device:/> set Interface Ethernet wan DefaultGateway=wan_gw
```

Next, set the IP object wan_ip which will be the IP address of the interface connected to the ISP:

```
Device:/> set IP4Address InterfaceAddresses/wan_ip
Address=10.5.4.35
```


Note: Qualifying the names of IP objects in folders

On initial startup of the SG10 Series, CorePlus automatically creates and fills the **InterfaceAddresses** folder in the CorePlus address book with the interface related IP address objects.

When we specify an IP address object which is located in a folder, we must qualify the object's name with the name of the folder. When we specify, for example, the address **wan_ip** we must qualify it with the folder name **InterfaceAddresses** so the qualified name becomes **InterfaceAddresses/wan_ip**.

If an object is not contained in a folder and is at the top level of the address book then no qualifying folder name is needed.

Now set the IP object wan_net which will be the IP network of the connecting interface:

It is recommended to verify the properties of the wan interface with the command:

```
Device:/> show Interface Ethernet wan
```

The typical output from this will be similar to the following:

```
Property Value

Name: wan

IP: InterfaceAddresses/wan_ip

Network: InterfaceAddresses/wan_net

DefaultGateway: wan_gw

Broadcast: 10.5.4.255

PrivateIP: <empty>

NOCHB: <empty>

MTU: 1500
```

```
100
                   Metric:
              DHCPEnabled:
                            No
           EthernetDevice:
                            0:wan 1:<empty>
          AutoSwitchRoute:
                            No
AutoInterfaceNetworkRoute:
                             Yes
 AutoDefaultGatewayRoute:
                             Yes
 ReceiveMulticastTraffic:
                             Auto
     MemberOfRoutingTable:
                             All
                 Comments:
                             <empty>
```

Setting the default gateway on the interface has the additional effect that CorePlus automatically creates a route in the default *main* routing table that has the network *all-nets* routed on the interface. This means that we do not need to explicitly create this route.

Even though an *all-nets* route is automatically added, no traffic can flow without the addition of an *IP rule* which explicitly allows traffic to flow. Let us assume we want to allow web surfing from the protected network *lan_net* on the interface *lan*. A simple rule to do this would have an *Action* of *Allow* and would be defined with the following commands.

Firstly, we must change the current CLI context to be the default *IPRuleSet* called *main* using the command:

```
Device:/> cc IPRuleSet main
```

Additional IP rulesets can be defined which is why we do this, with the rule set *main* existing by default. Notice that the CLI prompt changes to reflect the current context:

```
Device:/main>
```

Now add an IP rule called *lan_to_wan* to allows the traffic through to the public Internet:

This IP rule would be correct if the internal network hosts have public IP addresses but in most scenarios this will not be true and internal hosts will have private IP addresses. In that case, we must use NAT to send out traffic so that the apparent source IP address is the IP of the interface connected to the ISP. To do this we simply change the *Action* of the above command from *Allow* to *NAT*:

The service used in the IP rule is *http-all* which will allow most web surfing but does not include the DNS protocol to resolve URLs into IP addresses. To solve this problem, a custom service could be used in the above rule which combines *http-all* with the *dns-all* service. However, the recommended method which provides the most clarity to a configuration is to create a separate IP rule for DNS:

It is recommended that at least one DNS server is also defined in CorePlus. This DSN server or servers (a maximum of three can be configured) will be used when CorePlus itself needs to resolve URLs which is the case when a URL is specified in a configuration instead of an IP address. If we assume an IP address object called <code>dns1_address</code> has already been defined for the first DNS server, the command to specify the first DNS server is:

```
Device:/> set DNS DNSServer1=dns1_address
```

Assuming a second IP object called *dns2_address* has been defined, the second DNS server is specified with:

```
Device:/> set DNS DNSServer2=dns2_address
```

B. DHCP - automatic configuration

All required IP addresses can alternatively be automatically retrieved from the ISP's DHCP server by enabling DHCP on the interface connected to the ISP. If the interface on which DHCP is to be enabled is *wan*, then the command is:

```
Device:/> set Interface Ethernet wan DHCPEnabled=Yes
```

Once the required IP addresses are retrieved with DHCP, CorePlus automatically sets the relevant address objects in the address book with this information.

For CorePlus to know on which interface to find the public Internet, a *route* has to be added to the *main* CorePlus routing table which specifies that the network *all-nets* can be found on the interface connected to the ISP and this route must also have the correct *Default Gateway* IP address specified. This *all-nets* route is added automatically by CorePlus during the DHCP address retrieval process. Automatic route generation is a setting for each interface that can be manually enabled and disabled.

After all IP addresses are set via DHCP and an *all-nets* route is added, the connection to the Internet is configured but no traffic can flow to or from the Internet since there is no IP rule defined that allows it. As was done in the previous option (**A**) above, we must therefore manually define an IP rule that will allow traffic from a designated source interface and source network. (in this example, the network *lan_net* and interface *lan*) to flow to the destination network *all-nets* and the destination interface *wan*.

C. PPPoE setup

For PPPoE connection, create the PPPoE tunnel interface on the interface connected to the ISP. The interface *wan*, is assumed to be connected to the ISP in the command shown below which creates a PPPoE tunnel object called *wan_ppoe*:

Your ISP will supply the correct values for pppoe username and pppoe password.

Your ISP will supply the correct values for *pppoe_username* and *pppoe_password* in the dialog above.

The PPPoE tunnel interface can now be treated exactly like a physical interface by the policies defined in CorePlus rule sets.

There also has to be a route associated with the PPPoE tunnel to allow traffic to flow through it,

and this is automatically created in the *main* routing table when the tunnel is defined. If the PPPoE tunnel object is deleted, this route is also automatically deleted.

At this point, no traffic can flow through the tunnel since there is no IP rule defined that allows it. As was done in option **A** above, we must define an IP rule that will allow traffic from a designated source interface and source network (in this example, the network *lan_net* and interface *lan*) to flow to the destination network *all-nets* and the destination interface which is the PPPoE tunnel that we have defined.

D. PPTP setup

For PPTP connection, first create the PPTP tunnel interface. It is assumed below that we will create a PPTP tunnel object called *wan_pptp* with the remote endpoint *10.5.4.1*:

```
Device:/> add Interface L2TPClient wan_pptp Network=all-nets
username=pptp_username Password=pptp_password
RemoteEndpoint=10.5.4.1 TunnelProtocol=PPTP
```

Your ISP will supply the correct values for *pptp_username*, *pptp_password* and the remote endpoint.

Your ISP will supply the correct values for *pptp_username*, *pptp_password* and the remote endpoint. An interface is not specified when defining the tunnel because this is determined by CorePlus looking up the *Remote Endpoint* IP address in its routing tables.

The PPTP client tunnel interface can now be treated exactly like a physical interface by the policies defined in CorePlus rule sets.

There also has to be an associated route with the PPTP tunnel to allow traffic to flow through it, and this is automatically created in the *main* routing table when the tunnel is defined. The destination network for this route is the *Remote Network* specified for the tunnel and for the public Internet this should be *all-nets*.

As with all automatically added routes, if the PPTP tunnel object is deleted then this route is also automatically deleted.

At this point, no traffic can flow through the tunnel since there is no IP rule defined that allows it. As was done in option **A** above, we must define an IP rule that will allow traffic from a designated source interface and source network (in this example, the network *lan_net* and interface *lan*) to flow to the destination network *all-nets* and the destination interface which is the PPTP tunnel that we have defined.

Activating and Committing Changes

After any changes are made to a CorePlus configuration, they will be saved as a new configuration but will not yet be activated. To activate all the configuration changes made since the last activation of a new configuration, the following command must be issued:

```
Device:/> activate
```

Although the new configuration is now activated, it does not become permanently activated until the following command is issued within 30 seconds following the *activate*:

```
Device:/> commit
```

The reason for two commands is to prevent a configuration accidentally locking out the administrator. If a lock-out occurs then the second command will not be received and CorePlus will revert back to the original configuration after the 30 second time period (this time period is a

setting that can be changed).

DHCP Server Setup

If the Clavister Security Gateway is to act as a DHCP server then this can be set up in the following way:

First define an IP address object which has the address range that can be handed out. Here, we will use the IP range 192.168.1.10-192.168.1.20 as an example and this will be available on the lan interface which is connected to the protected internal network lan net.

```
Device:/> add Address IP4Address dhcp_range
Address=192.168.1.10-192.168.1.20
```

The DHCP server is then configured with this IP address object on the appropriate interface. In this case we will call the created DHCP server object *dhcp_lan* and assume the DHCP server will be available on the *lan* interface:

```
Device:/> add DHCPServer dhcp_lan IPAddressPool=dhcp_range
Interface=lan Netmask=255.255.255.0
DefaultGateway=InterfaceAddresses/lan_ip
DNS1=dns1_address
```

It is important to specify the *Default gateway* for the DHCP server since this will be handed out to DHCP clients on the internal network so that they know where to find the public Internet. The default gateway is always the IP address of the interface on which the DHCP server is configured. In this case, *lan_ip*.

NTP Server Setup

Network Time Protocol (NTP) servers can optionally be configured to maintain the accuracy of the system date and time. The command below sets up synchronization with the two NTP servers at hostname *pool.ntp.org* and IP address *10.5.4.76*:

The prefix *dns:* is added to the hostname to identify that it must resolved to an IP address by a DNS server (this is a convention used in the CLI with some commands).

Syslog Server Setup

Although logging may be enabled, no log messages are captured unless a server is set up to receive them and *Syslog* is the most common server type. If the Syslog server's address is 195.11.22.55 then the command to create a log receiver object called *my_syslog* which enables logging is:

```
Device:/> add LogReceiverSyslog my_syslog IPAddress=195.11.22.55
```

Allowing ICMP Ping Requests

As a further example of setting up IP rules, it can be useful to allow ICMP *Ping* requests to flow through the Clavister Security Gateway. As discussed earlier, the CorePlus will drop any traffic unless an IP rule explicitly allows it. Let us suppose that we wish to allow the pinging of external hosts with the ICMP protocol by computers on the internal *lan_net* network. The commands to allow this are as follows.

Firstly, we must change the current CLI context to be the *IPRuleSet* called *main* using the command:

```
Device:/> cc IPRuleSet main
```

Now add an IP rule called *allow_ping_outbound* to allow ICMP pings to pass:

The IP rule again has the *NAT* action and this is necessary if the protected local hosts have private IP addresses. The ICMP requests will be sent out from the Clavister Security Gateway with the IP address of the interface connected to the ISP as the source interface. Responding hosts will send back ICMP repsonses to this single IP and CorePlus will then forward the response to the correct private IP address.

Adding a Drop All Rule

Scanning of the IP rule set is done in a top-down fashion. If **no** matching IP rule is found for a new connection then the *default rule* is triggered. This rule is hidden and cannot be changed and its action is to drop all such traffic as well as generate a log message for the drop.

In order to gain control over the logging of dropped traffic, it is recommended to create a drop all rule as the last rule in the *main* IP rule set. This rule has an *Action* of *Drop* with the source and destination network set to *all-nets* and the source and destination interface set to *any*.

The service for this rule must also be specified and this should be set to *all_services* in order to capture all types of traffic. The command for creating this rule is:

Uploading a License

Without a valid license loaded, CorePlus operates in *demonstration mode* which means it will cease operations after 2 hours from startup. To remove this restriction, a valid license must be uploaded to the Clavister Security Gateway.

To do this, download a license as described in the last part of Section 3.2, "Web Interface and Wizard Setup". This license can then be uploaded directly to CorePlus using a Secure Copy (SCP) client (see the CorePlus Administrators Guide for more details of using SCP). As soon as upload of the license is complete, the 2 hour restriction will be removed and CorePlus will be restricted only by the restrictions of the license.

3.5. Troubleshooting Setup

This appendix deals with connection problems that might occur when connecting a management workstation to a Clavister Security Gateway.

If the management interface does not respond after the Clavister Security Gateway has powered up and CorePlus has started, there are a number of simple steps to troubleshoot basic connection problems:

1. Check that the correct interface is being used.

The most obvious problem is that the wrong Clavister Security Gateway interface has been used for the initial connection. Only the first interface found by CorePlus is activated for the initial connection from a browser after CorePlus starts for the first time.

2. Check that interface characteristics match.

If a Clavister Security Gateway's interface characteristics are configured manually then the interface on a switch to which it is connected should be configured with the same characteristics. For instance, the link speeds and half/full duplex settings must match. If they don't, communication will fail. This problem will not occur if the interfaces are set for automatic configuration on both sides and automatic is always the Clavister factory default setting.

3. Check that the workstation IP is configured correctly.

The second most obvious problem is if the IP address of the workstation running the web browser is not configured correctly.

4. Is the management interface properly connected?

Check the link indicator lights on the management interface. If they are dark then there may be a cable problem.

5. Check the cable type connected to the management interface.

Is the management interface connected directly to the management workstation or another router or host? In this case, an Ethernet "cross-over" cable may be needed for the connection, depending on the capabilities of the interface.

6. Using the ifstat CLI command.

To investigate a connection problem further, connect the a console to the RS-232 port on the Clavister Security Gateway after CorePlus starts. When you press the enter key, CorePlus should respond with the a standard CLI prompt. Now enter the following command a number of times:

Device:/> ifstat <if-name>

Where *<if-name>* is the name of the management interface. This will display a number of counters for that interface. The *ifstat* command on its own can list the names of all the interfaces.

If the *Input* counters in the hardware section of the output are not increasing then the error is likely to be in the cabling. However, it may simply be that the packets are not getting to the Clavister Security Gateway in the first place. This can be confirmed with a packet sniffer if it is available.

If the *Input* counters are increasing, the management interface may not be attached to the correct physical network. There may also be a problem with the routing information in any connected hosts or routers.

7. Using the arpsnoop CLI command.

A final diagnostic test is to try using the console command:

Device:/> arpsnoop -all

This will show the ARP packets being received on the different interfaces and confirm that the correct cables are connected to the correct interfaces.

3.6. Going Further with CorePlus

After initial setup is complete, the administrator is ready to go further with configuring CorePlus to suit the requirements of a particular networking scenario. The reference documentation provided for this consists of the following manuals:

- The CorePlus Administrators Guide
- The CLI Reference Guide
- The Log Reference Guide

The CorePlus Administrators Guide

This guide is a comprehensive description of all CorePlus features and includes a detailed table of contents with a comprehensive index to quickly locate particular topics.

Examples of the setup for various scenarios are included but screenshots are kept to a minimum since the user has a variety of management interfaces to choose from.

Basic CorePlus Objects and Rules

At minimum, the new administrator should first aquaint themselves with the CorePlus *Address Book* for defining IP address objects and with the CorePlus *IP rule set* for defining IP rules which can allow or block traffic types and which are also used to set up NAT address translation.

IP rules also demonstrate the way *Security Policies* are set up in CorePlus by identifying the targeted traffic through combinations of the source/destination interface/network combined with protocol type. By default, no IP rules are defined so all traffic is dropped. At least one IP rule needs to be defined before traffic can traverse the Clavister Security Gateway.

In addition to IP rules, *routes* need to be defined so that traffic can be sent on the correct interface to reach its final destination.

ALGs

Once the address book and IP rules are understood, the various ALGs will probably be of interest for managing higher level protocols such as HTTP. For instance, for management of web surfing, the HTTP ALG provides a number of important features such as content filtering.

VPN Setup

A common requirement is to quickly setup VPN networks based on Clavister Security Gateways. The CorePlus Administrators Guide includes an extensive VPN section and as part of this, a *VPN Quick Start* section which goes through a checklist of setup steps for nearly all types of VPN scenarios.

Included with the quick start section is a checklist for troubleshooting and advice on how best to deal with the networking complications that can arise with certificates.

Log Messages

By default, certain events will generate log messages and at least one log server should be configured in CorePlus to capture these messages although a *memlog* feature is provided which

captures recent log messages in hardware memory. The administrator should review what events are important to them and at what severity. The *The Log Reference Guide* provides a complete listing of the log messages that CorePlus is capable of generating.

The CLI Reference Guide

The *CLI Reference Guide* provides a complete listing of the available CLI commands with their options. A CLI overview is also provided as part of the *CorePlus Administrators Guide*.

CorePlus Education Courses

For details about classroom and online CorePlus education as well as CorePlus certification, visit the Clavister company website at http://www.clavister.com or contact your local sales representative.

Staying Informed

Clavister maintains an RSS feed of announcements that can be subscribed to at https://forums.clavister.com/rss-feeds/announcements/. It is recommended to subscribe to this feed so that you receive notifications when new releases of CorePlus versions are available for download and installation. Alternatively, announcements can be read directly from the Clavister forums which can be found at https://forums.clavister.com/.

Chapter 4: Warranty Service

Limitation of Warranty

Clavister warrants to the customer of the SG10 Series Appliance that the Hardware components will be free from defects in material and workmanship under normal use for a period of two (2) years from the Start Date (as defined below). The warranty will only apply to failure of the product if Clavister is informed of the failure not later than two (2) years from the Start Date or thirty (30) days after that the failure was or ought to have been noticed by the customer.

The warranty will not apply to products from which serial numbers have been removed or to defects resulting from unauthorized modification, operation or storage outside the environmental specifications for the product, in-transit damage, improper maintenance, defects resulting from use of third-party software, accessories, media, supplies, consumables or such items not designed for use with the product, or any other misuse. Any replacement Hardware will be warranted for the remainder of the original warranty period or thirty days, whichever is longer.

Note that the term *Start Date* means the earlier of the product registration date **OR** ninety (90) days following the day of shipment by Clavister.

Obtaining Warranty Service with an RMA

Warranty service can be obtained within the warranty period with the following steps:

1. Obtain a *Return Material Authorization* (RMA) number from Clavister. This **must** be obtained before the product is sent back.

The Clavister RMA request form can be found online at (clickable link):

http://www.clavister.com/support/support rma request.html

If the Purchaser's circumstances require special handling of warranty correction, then at the time of requesting the RMA number, the Purchaser may also propose suitable special procedures.

- 2. The defective product **MUST** be packaged securely in the original packaging or other suitable shipping packaging to ensure that it will not be damaged in transit.
- 3. The RMA number must be clearly marked on the outside of the package.
- 4. The package is then shipped to Clavister with all the costs of mailing/shipping/insurance paid by the Purchaser. The address for shipping is:

Clavister AB Sjögatan 6J 891 60 Örnsköldsvik SWEDEN

If the product has not yet been registered with the Clavister through it's client web, a proof of purchase (such as a copy of the dated purchase invoice) must be provided with the shipped product.

An RMA Number Must Be Obtained Before Shipping

Any package returned to Clavister without an RMA number will be rejected and shipped back to the Purchaser at the Purchaser's expense. Clavister reserves the right in such a case to levy a reasonable handling charge in addition to mailing and/or shipping costs.

Data on the Hardware

Note that Clavister is not responsible for any of the purchaser's software, firmware, information, or memory data contained in, stored on, or integrated with any product returned to Clavister pursuant to this warranty.

Contacting Clavister

Should there be a problem with the online form then Clavister support can be contacted by email at: support@clavister.com.

Customer Remedies

Clavister's entire liability according to this warranty shall be, at Clavister's option, either return of the price paid, or repair or replacement of the Hardware that does not meet Clavister's limited warranty and which is returned to Clavister with a copy of your receipt.

Limitations of Liability

Refer to the legal statement at the beginning of the guide for a statement of liability limitations.

Chapter 5: Safety Precautions

Safety Precautions

Clavister SG10 Series devices are *Safety Class I* products and have protective ground terminals. There must be an uninterrupted safety earth ground from the main power source to the product's input wiring terminals, power cord, or supplied power cord set. Whenever it is likely that the protection has been impaired, disconnect the power cord until the ground has been restored.

For LAN cable grounding:

- If your LAN covers an area served by more than one power distribution system, be sure their safety grounds are securely interconnected.
- LAN cables may occasionally be subject to hazardous transient voltage (such as lightning or disturbances in the electrical utilities power grid). Handle exposed metal components of the network with caution.

There are no user-serviceable parts inside these products. Only service-trained personnel can perform any adjustment, maintenance or repair.

Säkerhetsföreskrifter

Dessa produkter är säkerhetsklassade enligt klass I och har anslutningar för skyddsjord. En obruten skyddsjord måste finnas från strömkällan till produktens nätkabelsanslutning eller nätkabel. Om det finns skäl att tro att skyddsjorden har blivit skadad, måste produkten stängas av och nätkabeln avlägnas till dess att skyddsjorden har återställts.

För LAN-kablage gäller dessutom att:

- om LAN:et täcker ett område som betjänas av mer än ett strömförsörjningssystem måste deras respektive skyddsjord vara ihopkopplade.
- LAN kablage kan vara föremål för farliga spänningstransienter (såsom blixtnedslag eller störningar i elnätet). Hantera metallkomponenter i förbindelse med nätverket med försiktighet.

Det finns inga delar i produkten som kan lagas av användaren. All service samt alla justeringar, underhåll eller reparationer får endast utföras av behörig personal.

Informations concernant la sécurité

Cet appareil est un produit de classe I et possède une borne de mise à la terre. La source d'alimentation principale doit être munie d'une prise de terre de sécurité installée aux bornes du câblage d'entree, sur le cordon d'alimentation ou le cordon de raccordement fourni avec le produit. Lorsque cette protection semble avoir été endommagée, débrancher le cordon d'alimentation jusqu'à ce que la mise à la terre ait été réparée.

Mise à la terre du câble de réseau local:

- si votre réseau local s'étend sur une zone desservie par plus d'un système de distribution de puissance, assurez-vous que les prises de terre de sécurité soint convenablement interconnectées.
- Les câbles de réseaux locaux peuvent occasionnellement être soumis à des surtensions transitoires dangereuses (telles que la foudre ou des perturbations dans le réseau d'alimentation public). Manipulez les composants métalliques du réseau avec précautions.

Aucune pièce contenue à l'intérieur de ce produit ne peut être réparée par l'utilisateur. Tout dépannage, réglage, entretien ou réparation devra être confié exclusivement à un personnel qualifié.

Hinweise zur Sicherheit

Dies ist ein Gerät der Sicherheitsklasse I und verfügt über einen schützenden Erdungsterminal. Der Betrieb des Geräts erfordert eine ununterbrochene Sicherheitserdung von der Hauptstromquelle zu den Geräteingabeterminals, den Netzkabeln oder dem mit Strom belieferten Netzkabelsatz voraus. Sobald Grund zur Annahme besteht, dass der Schutz beeinträchtigt worden ist, das Netzkabel aus der Wandsteckdose herausziehen, bis die Erdung wiederhergestellt ist.

Für LAN-Kabelerdung:

- Wenn Ihr LAN ein Gebiet umfasst, das von mehr als einem Stromverteilungssystem beliefert wird, müssen Sie sich vergewissern, dass die Sicherheitserdungen fest untereinander verbunden sind.
- LAN-Kabel können gelegentlich gefährlichen Übergangsspannungen ausgesetz werden (beispielsweise durch Blitz oder Störungen in dem Starkstromnetz des Elektrizitätswerks). Bei der Handhabung exponierter Metallbestandteile des Netzwerkes Vorsicht walten lassen.

Dieses Gerät enthält innen keine durch den Benutzer zu wartenden Teile. Wartungs-, Anpassungs-, Instandhaltungs- oder Reparaturarbeiten dürfen nur von geschultem Bedieningspersonal durchgeführt werden.

Considerazioni sulla sicurezza

Questo prodotte è omologato nella classe di sicurezza I ed ha un terminale protettivo di collegamento a terra. Dev'essere installato un collegamento a terra di sicurezza, non interrompibile che vada dalla fonte d'alimentazione principale ai terminali d'entrata, al cavo d'alimentazione oppure al set cavo d'alimentazione fornito con il prodotto. Ogniqualvolta vi sia probabilità di danneggiamento della protezione, disinserite il cavo d'alimentazione fino a quando il collegaento a terra non sia stato ripristinato.

Per la messa a terra dei cavi LAN:

- se la vostra LAN copre un'area servita da più di un sistema di distribuzione elettrica, accertatevi che i collegamenti a terra di sicurezza siano ben collegati fra loro;
- i cavi LAN possono occasionalmente andare soggetti a pericolose tensioni transitorie (ad esempio, provocate da lampi o disturbi nella griglia d'alimentazione della società elettrica); siate cauti nel toccare parti esposte in metallo della rete.

Nessun componente di questo prodotto può essere riparato dall'utente. Qualsiasi lavoro di riparazione, messa a punto, manutenzione o assistenza va effettuato esclusivamente da personale specializzato.

Consideraciones sobre seguridad

Este aparato se enmarca dentro de la clase I de seguridad y se encuentra protegido por una borna de puesta a tierra. Es preciso que exista una puesta a tierra continua desde la toma de alimentación eléctrica hasta las bornas de los cables de entrada del aparato, el cable de alimentación hasta haberse subsanado el problema.

Puesta a tierra del cable de la red local (LAN):

- Si la LAN abarca un área cuyo suministro eléctrico proviene de más de una red de distribución de electricidad, cerciorarse de que las puestas a tierra estén conectadas entre sí de modo seguro.
- Es posible que los cables de la LAN se vean sometidos de vez en cuando a voltajes momentáneos que entrañen peligro (rayos o alteraciones en la red de energía eléctrica). Manejar con precaución los componentes de metal de la LAN que estén al descubierto.

Este aparato no contiene pieza alguna susceptible de reparación por parte del usuario. Todas las reparaciones, ajustes o servicio de mantenimiento debe realizarlos solamente el técnico.

Appendix A: Specifications

Below are the key hardware specifications for Clavister SG10 Series installation.

SG10 Series Dimensions, Weight and MTBF

Height x Width x Depth (mm)	30 x 240 x 160
Hardware Weight	1.1 kg
Hardware Form Factor	Desktop
MTBF	43,025 hours

Regulatory and Safety Standards

Safety	UL, CE
EMC	FCC class A, CE class A

Environmental

Humidity	20% to 95% noncondensing
Operational Temperature	0 to 45° C
Vibration	0.41 Grms2 (3-500 Hz)
Shock	30 G

Power Specifications

Power Supply (AC)	100-240V, 50-60 Hz
Typical Consumption (W)	16 W
Typical Current @ 230V	70 mA
Typical Current @ 110V	145 mA
BTU	55 BTU
PSU Rated Power (W)	20 W

Further information

For complete product specifications refer to: http://www.clavister.com/products

Appendix B: Declarations of Conformity

CLOVISTER

We, the manufacturer,

Clavister AB Torggatan 10, Box 393 SE-891 28 ÖRNSKÖLDSVIK SWEDEN

Declares that the product

Product Description : Network security appliance Model Designation : Clavister 10-Series

Is in compliance with the essential requirements and other relevant provisions of the following directives:

Electromagnetic Compatibility Directive (89/336/EEC) (2004/108/EC)

The product is compatible with the following norms / standards:

EN 55022 class B (2006) EN 61000-3-2 (2000, A1:2001) EN 61000-3-3 (1995, A1:2001) EN55024 (1998, A1:2001, A2:2003) IEC 61000-4-2 (1995, A2:2001) IEC 61000-4-3 (2002) IEC 61000-4-4 (1995, A2:2001) IEC 61000-4-5 (1995, A1:2000) IEC 61000-4-6 (1996, A1:2000) IEC 61000-4-8 (1993, A1:2000) IEC 61000-4-11(1994, A1:2000)

Manufacturer/Authorised representative

Peter Johansson, CEO Örnsköldsvik, 2007-07-20

CE REPORT: EC753028 CLA-APP-SG10-CEDOC-A001

CLOVISTER

DECLARATION OF CONFORMITY

We, the manufacturer,

Clavister AB

Torggatan 10, SE-891 28 ÖRNSKÖLDSVIK

SWEDEN

Declares that the product

Product Description : Network Security Gateway Model Designation : Clavister SG10 System

Is in compliance with the essential requirements and other relevant provisions of the following:

FCC CFR Title 47 Part 15 Subpart B
Federal Communication Commission
Code of Federal Regulations
Telecommunications, Radio frequency devices,

unintentional radiators

ICES Industry Canada

Interference-Causing Equipment Standard for Digital Apparatus

The product is compatible with the following norms / standards: FCC CFR Title 47, Part2, Part 15 Class B ICES-003 Issue 4, Class B

(2004)

(2004) Refers to CAN/CSA-CISPR 22-96

Manufacturer/Authorised representative

Peter Johansson, CEO

Örnsköldsvik, 2007-07-20

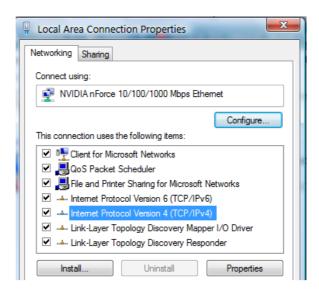
Certificate: FD753028 CLA-APP-SG10-FCCDOC-A002

Appendix C: Vista IP Setup

If a PC running Microsoft Vista is being used as the CorePlus management workstation, the computer's Ethernet interface connected to the Clavister Security Gateway must be configured with an IP address which belongs to the network 192.168.1.0/24 and is different from the security gateway's address of 192.168.1.1.

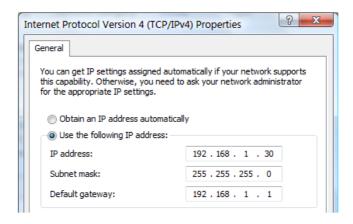
The IP address 192.168.1.30 will be used for this purpose and the steps to set this up with Vista are as follows:

- 1. Press the Windows **Start** button.
- 2. Select the **Control Panel** from the start menu.
- 3. Select **Network & Sharing Center** from the control panel.


4. Select the **Manage network connections** option.

5. A list of the Ethernet interface connections will appear. Select the interface that will connect to the security gateway.

6. The properties for the selected interface will appear.


Select and display the properties for Internet Protocol Version 4 (TCP/IPv4).

7. In the properties dialog, select the option **Use the following IP address** and enter the following values:

• IP Address: 192.168.1.30

Subnet mask: 255.255.255.0

Default gateway: 192.168.1.1

DNS addresses can be entered later once Internet access is established.

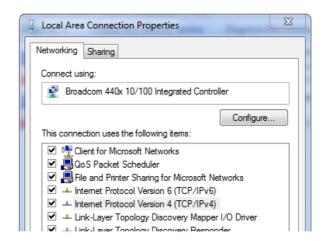
8. Click **OK** to close this dialog and close all the other dialogs opened since step (1).

Appendix D: Windows 7 IP Setup

If a PC running Microsoft Windows 7 is being used as the CorePlus management workstation, the computer's Ethernet interface connected to the Clavister Security Gateway must be configured with an IP address which belongs to the network 192.168.1.0/24 and is different from the security gateway's address of 192.168.1.1.

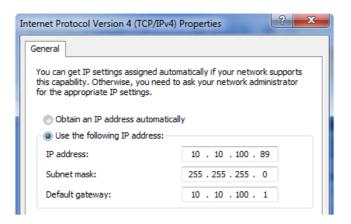
The IP address 192.168.1.30 will be used for this purpose and the steps to set this up with Windows 7 are as follows:

- 1. Press the Windows **Start** button.
- 2. Select the **Control Panel** from the start menu.
- 3. Select **Network & Sharing Center** from the control panel.


4. Select the **Change adapter settings** option.

5. A list of adapters will appear and will include the Ethernet interfaces. Select the interface that will connect to the security gateway.

6. The properties for the selected interface will appear.


Select and display the properties for Internet Protocol Version 4 (TCP/IPv4).

7. In the properties dialog, select the option **Use the following IP address** and enter the following values:

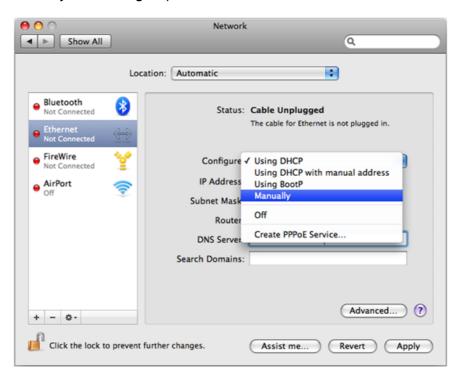
• IP Address: 192.168.1.30

Subnet mask: 255.255.255.0

• **Default gateway:** 192.168.1.1

DNS addresses can be entered later once Internet access is established.

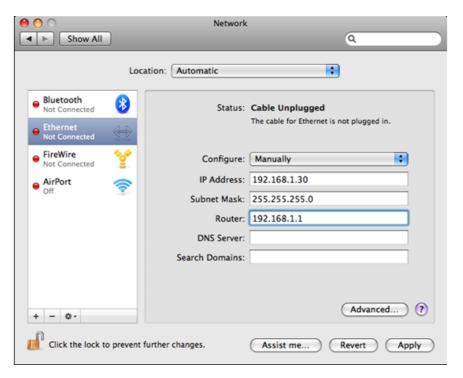
8. Click **OK** to close this dialog and close all the other dialogs opened since step (1).


Appendix E: Apple Mac IP Setup

An Apple Mac can be used as the management workstation for initial setup of a Clavister Security Gateway. To do this, a selected Ethernet interface on the Mac must be configured correctly with a static IP. The setup steps for this with Mac OS X are:

- 1. Go to the **Apple Menu** and select **System Preferences**.
- 2. Click on Network.

- 3. Select **Ethernet** from the left sidebar menu.
- 4. Select **Manually** in the **Configure** pull down menu.



5. Now set the following values:

• IP Address: 192.168.1.30

• Subnet Mask: 255.255.255.0

• Router: 192.168.1.1

6. Click **Apply** to complete the static IP setup.

CLOVISTEK

Clavister AB Sjögatan 6J SE-89160 Örnsköldsvik SWEDEN

Phone: +46-660-299200 Fax: +46-660-12250

www.clavister.com