CLAVISTLE

SDK Guide
Clavister InControl

Version 1.10.02

Clavister AB

Sjégatan 6J

SE-89160 Ornskéldsvik
SWEDEN

Phone: +46-660-299200
Fax: +46-660-12250

www.clavister.com

Published 2010-04-06
Copyright © 2010 Clavister AB

SDK Guide
Clavister InControl
Version 1.10.02

Published 2010-04-06

Copyright © 2010 Clavister AB

Copyright Notice

This publication, including all photographs, illustrations and software, is protected under
international copyright laws, with all rights reserved. Neither this manual, nor any of the material
contained herein, may be reproduced without the written consent of Clavister.

Disclaimer

The information in this document is subject to change without notice. Clavister makes no
representations or warranties with respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for a particular purpose. Clavister reserves the
right to revise this publication and to make changes from time to time in the content hereof
without any obligation to notify any person or parties of such revision or changes.

Limitations of Liability

UNDER NO CIRCUMSTANCES SHALL CLAVISTER OR ITS SUPPLIERS BE LIABLE FOR DAMAGES OF
ANY CHARACTER (E.G. DAMAGES FOR LOSS OF PROFIT, SOFTWARE RESTORATION, WORK
STOPPAGE, LOSS OF SAVED DATA OR ANY OTHER COMMERCIAL DAMAGES OR LOSSES)
RESULTING FROM THE APPLICATION OR IMPROPER USE OF THE CLAVISTER PRODUCT OR
FAILURE OF THE PRODUCT, EVEN IF CLAVISTER IS INFORMED OF THE POSSIBILITY OF SUCH
DAMAGES. FURTHERMORE, CLAVISTER WILL NOT BE LIABLE FOR THIRD-PARTY CLAIMS AGAINST
CUSTOMER FOR LOSSES OR DAMAGES. CLAVISTER WILL IN NO EVENT BE LIABLE FOR ANY
DAMAGES IN EXCESS OF THE AMOUNT CLAVISTER RECEIVED FROM THE END-USER FOR THE
PRODUCT.

Table of Contents

PO ACE .. ettt et e e eeas 4
1. AN SDK OVEIVIEW ..ttt ettt et et e e e e e e eaeenns 5
) - 1] g Te [@eTe g T RO OPSPRPIN 8
3. 0pening CoONfIQUIAtIONSiiveiiii ittt i et e et e et e et e et e e et e et e et e eetnaeennneenes 11
4. Editing CONfIQUIAtiONSuiiuniiiiiiiiin ettt e e e e e eai e eaanes 13
5.Check In and DeploymeNntcoeuuiiiiiieii et 18
F Y | ¥ e [o Y] (U o 19

Preface

Target Audience

The target audience for this publication is software developers who wish to access and
manipulate Clavister Security Gateway configurations directly from custom applications.

Text Structure

The text is divided into chapters and subsections. Numbered subsections are shown in the table
of contents at the beginning of the document.

Text links

Where a "See section” link is provided in the main text, this can be clicked on to take the reader
directly to that reference. For example, "see Chapter 1, An SDK Overview".

Web links

Web links included in the document are clickable, for example http://www.clavister.com.

Notes to the main text

Special sections of text which the reader should pay special attention to are indicated by icons
on the left hand side of the page followed by a short paragraph in italicized text. There are the
following types of such sections:

Note

This indicates some piece of information that is an addition to the preceding text. It may
concern something that is being emphasized or something that is not obvious or
explicitly stated in the preceding text.

Caution

This indicates where the reader should be careful with their actions as an undesirable
situation may result if care is not exercised.

Important
This is an essential point that the reader should read and understand.

1 0 Warning
o This is essential reading for the user as they should be aware that a serious situation
may result if certain actions are taken or not taken.

http://www.clavister.com

Chapter 1: An SDK Overview

The InControl SDK is a toolset that allows third parties to create custom clients applications which
can programmatically manage and configure Clavister Security Gateways. The custom client
applications achieve this by making use of the InControl Application Programming Interface (API).
This APl is the central component of the SDK.

The complete SDK is included in the Clavister InControl installation package and contains the
following:

This PDF guide.

« The complete InControl API reference description in Windows Help format.

The InControl APl is built into the InControl server by default and there is no need for additional
binaries.

The Purpose of the InControl API

The InControl API provides the ability to create applications for managing and configuring one or
a number of Clavister Security Gateways. Applications can be written using any one of a number
of programming languages and can run on a variety computing platforms.

InControl APl Clients

L | b |
|
J— -.L_\
— e
e N
e «5.\—
iy, p— <
.)

Security Gateways InControl Server

Client applications don't communicate directly with Clavister Security Gateways but instead
interact with an InControl Server running on the same or a different computer. The server
maintains a central database containing the configurations of connected security gateway and
mediates all communications between clients and individual gateways.

Chapter 1: An SDK Overview

The InControl server performs the same functions that it does with the standard Clavister
InControl client. However, the Clavister client is replaced with a non-Clavister client which is
written using the API.

The APl Implementation

The InControl APl implementation is based on the Microsoft Windows Communication
Foundation (WCF) which makes use of Simple Object Access Protocol (SOAP) to pass objects
between a WCF Service and a WCF Client. With the InControl API, the InControl server provides the
WCF Service function and the application written with the APl acts as the WCF Client.

This guide is not designed to be an introduction to WCF programming and it is therefore
recommended to refer to other sources for an in-depth understanding of general WCF principles.
This guide will assume that the reader understands basic WCF concepts.

InControl Server Setup and Licensing

Basic installation and administration of the InControl server is not discussed in this manual. This
can be found in the separate InControl Administration Guide. InControl APl based applications can
run on either the same PC as the server or on a different computer.

The InControl server comes as standard with the API capability. However, this is only enabled if a
valid InControl Server License is installed on the server.

The current version of the InControl APl does not make use of any user authentication to access
the InControl server. Therefore, the InControl API is disabled by default, and needs to be enabled
in the InControl Server configuration file before any access to the APl can be made.

To enable the InControl API, edit the InControl Server configuration file /CS.exe.config which
resides in the target installation directory of the InControl Server (i.e. "C:\Program
Files\Clavister\InControl\Server"). Locate the tag <PluginHost API="false" /> and change "false" to
“true"” so that the resulting text block looks like this:

<Pl ugi nHost APl ="true">

Note: Avoiding unauthorized access

To avoid unauthorized access to the InControl API, it is important that you ensure that
the InControl API port (TCP 33726) is not reachable from any other hosts than those
where the trusted API clients reside. Future releases of the InControl API will include user
authentication which removes this limitation.

The Capabilities of the InControl API

Applications that make use of the API are capable of the same range of functions that the
standard InControl client is capable of. That is, they may check out, examine, edit and check in
the configurations of any Clavister Security Gateway reachable via the InControl server.

API Reference Materials

Although programming examples are discussed in this guide, the full API reference
documentation is not included. This is provided in a more convenient Windows Help format as a
separate file in the InControl SDK package.

Chapter 1: An SDK Overview

Compatible Development Environments

The code examples included with the SDK are written using the C Sharp (C#) programming
language. However, since the InControl APl is based on WCF, any development platform capable
of supporting this standard could be used for application development with the API.

A description with screen shots for setting up the InControl APl with Microsoft's Visual Studio
development environment can be found in Appendix A, Visual Studio Setup.

Chapter 2: Starting Coding

This chapter starts examining coding examples which make use of the InControl API.

Similarities with the CLI

A useful principle to remember is that programming with the InControl API is very similar to
constructing CorePlus Command Line Interface (CLI) commands. The two are similar since they
both interact with the Configuration Engine which is the CorePlus subsystem that deals with the
management of CorePlus configurations.

Similarities to the CLI will be discussed further in this guide and example CLI commands will
sometimes be given following InControl APl based code in order to highlight the similarities. The
CLI Reference Guide can be an extremely useful reference document when programming with the
APl since it lists all possible APl parameter options.

A key difference between using the CLI and the InControl API is that an equivalent to the "cc"
(change context/category) command does not need to be used to change the current context to
be a particular object such as the main IP rule set when editing IP rules. Instead, the InControl API
uses a more direct way of referring to a particular configuration object.

A Simple Example

We will first look at a simple first example of APl based source code. This example, like others
used throughout this guide, is written in C Sharp (C#) and assumes that your development
environment is setup accordingly with references to the WCF service (see Appendix A, Visual
Studio Setup).

/1 Open the connection fromthe client to the server
Channel Fact or y<| Renot eSer ver > channel Factory =
new Channel Fact or y<| Renot eSer ver >(new Net TcpBi ndi ng(),
"net.tcp://1ocal host: 33726/ 1 nControl ") ;
| Renot eServer server = channel Fact ory. Cr eat eChannel () ;
/1 Cet the root domain which contains all defined security gateways
Dormai n gl obal = server.get_Root ();

/1 Assune we have a device in the root domain called 'sgwstockhol m
/1l CGet this security gateway

Devi ce sgwst ockhol m =
server. Get Confi glbj ect ByNane(gl obal , "sgwsSt ockhol mi') as Devi ce;

/| Check out this security gateway

8

Chapter 2: Starting Coding

server. CheckQut Conf i gur ati on(sgwst ockhol nm ;
/1l Get the latest configuration for this gateway
Configuration cfg = server. GetLat est Confi guration(sgw);

/1 Add a new IP rul e
/1 Start by setting the properties of the rule

Di ctionary<string, string> properties = new Dictionary<string, string>();

properties. Add("Action", "NAT");

properties. Add(" Sour cel nterface", "lan");
properties. Add(" Sour ceNet wor k", "lannet");
properties. Add("Destinationlnterface", "wan");

properties. Add("Desti nati onNet work", "al |l -nets");

properties. Add(" Service", "http-outbound");

properties. Add("LogEnabl ed", "True");

properties. Add(" Conments", "Allow and NAT HTTP traffic fromLAN to WAN");

// Get the main | PRul eSet folder to add the node to it
// Note how the ruleset identifier is constructed

Node fol der = server. Get Node(cfg, "nmin.|PRul eSet");

/1 Add the IP Rule as a child node to this folder

server. AddChi | dNode(fol der, "IPRule", "NAT_HTTP", properties);
/1 Check in the new configuration

server. Checkl nConfi guration(cfg,
"Added I P rule allowing NAT LAN to WAN HTTP traffic");

/1 Deploy and activate the new configuration on the security gateway
server . Depl oyConf i gur ati on(sgwst ockhol nm) ;
/! Finished so close the connection to the InControl server

(server as |dientChannel).d ose();

Various aspects of this code will be discussed in detail in this and subsequent chapters. In this
chapter, we will look next at the code which opens and closes the connection to the InControl
server.

Establishing Server Connection

To set up the initial connection to the InControl server, the server must first be reachable at a
given IP address. The code for establishing communications with the server, as well as closing
them, is as follows:

Channel Fact or y<| Renot eSer ver > channel Factory =
new Channel Fact or y<| Renot eSer ver >(new Net TcpBi ndi ng(),
"net.tcp://1ocal host: 33726/ 1 nControl ") ;

| Renot eServer server = channel Fact ory. Cr eat eChannel () ;

(server as |1 dientChannel).d ose();

The initial steps in this code are:

« Assuming that the server is running on the same Windows computer as the InControl server
we can connect to Localhost instead of an IP address and the C# source code for this is:

Channel Fact or y<I Renot eSer ver > channel Factory =
new Channel Fact or y<| Renot eSer ver >(new Net TcpBi ndi ng(),

Chapter 2: Starting Coding

"net.tcp://local host: 33726/ 1 nControl ");

Where the server is not on the same computer, Localhost should be replaced with the
relevant IP address.

« Once the ChannelFactory object instance is defined, the InControl server itself is retrieved as
an instance of IRemoteServer.

| Renot eServer server = channel Fact ory. Creat eChannel () ;

The object named server will be used extensively throughout the remaining code examples in
this guide.

Note

Error handling try and catch blocks are not explicitly shown in these code examples but
should be used following normal error handling practices to catch errors.

Closing the Server Connection

Before ending an InControl API based application, the connection to the InControl server should
be closed when the server is no longer required. The code to perform this operation is:

(server as | dientChannel).d ose();
This frees up allocated resources on the server.

In the following chapter we will examine the remaining parts of the example program above and
other important operations performed with the InControl API.

10

Chapter 3: Opening Configurations

This chapter discusses how to obtain and check out a CorePlus configuration in preparation for
editing.

It is useful at this point to look at the relationships between the classes involved in obtaining a
CorePlus configuration.

" Configtbject ®)
Abstract Class

Domain 3 ' Device %) 1
Sealed Class Abstract Class

= CanfigObjed = CanfigObjed

SecurityGateway ¥
Sealed Clasz
=+ Device

The C# code to retrieve a Configuration object is as follows:

Dormai n gl obal = server.get Root();

Devi ce sgwst ockhol m =
server . Get Confi gObj ect ByNane(gl obal , "sgwsSt ockhol ') as Devi ce;

server. CheckQut Conf i gurati on(sgwsSt ockhol m ;

Configuration cfg = server. Get Lat est Confi gurati on(sgwst ockhol m ;

Let us now break the steps in this code down.

Checking Out Gateways

Once the Configuration object is obtained we can perform a check out of the security gateway in
order to start editing the configuration. This is a suggested ordering and the check out of the

11

Chapter 3: Opening Configurations

gateway could be done before obtaining the configuration.

Note

Checking out a security gateway is not necessary if the operations performed on the
configuration only involve reading the configuration's contents. If modifications are to
be made then the security gateway has to be checked out.

« Get the root domain of the server which will provide the methods to access individual
security gateways:

Donmi n gl obal = server. get_Root ();
« Assuming that there is a Clavister Security Gateway in the root domain named sgwStockholm,
get the Device object for this gateway:

Devi ce sgwst ockhol m =
server . Get Confi gObj ect ByNane(root, "sgwStockhol m') as Devi ce;

At this point the application is able to read configuration information but cannot change it
until a check out operation is performed.

« Check out this security gateway by invoking the CheckOutConfiguration method of the Device
class.

server . CheckQut Conf i gur ati on(sgwSt ockhol n) ;

After the checkout, the application will have exclusive access to the security gateway's
configuration and no other client will be able to check it out.

Checking back in the security gateway is discussed in Chapter 5, Check In and Deployment.

Opening a Configuration

Before we can work with a configuration we must obtain a specific version, usually the latest, as a
Configuration object instance. To get the latest version we would use the code:

Configuration cfg = server. Get Lat est Confi guration(sgw);
This code retrieves the latest version of the specific security gateway's configuration. The

InControl server maintains a database of past versions and it is also possible to get a list of all
available versions and select a particular version.

12

Chapter 4: Editing Configurations

This chapter looks at example InControl APl based code for performing typical editing operations
on a CorePlus configuration. Assuming that we have checked out a configuration, we will
examine how typical editing operations are can be performed on a CorePlus configuration.

Adding an IP Rule

Let us first look at how a new IP rule is defined and examine in more depth some of the code
used in the code example at the beginning of Chapter 2, Starting Coding.

IP rules define what traffic is allowed or dropped as it enters the security gateway through a
particular interface (the source interface) and exits another interface (the destination interface),
and that comes from a particular network (the source network) going to a particular network (the
destination network).

In this example, taken from the code example in the previous chapter, we will allow traffic from
the network lannet which is connected to the lan interface to flow to the Internet. The Internet is
connected to the wan interface and the destination network is all-nets (in other words, any
network).

The required IP rule can be summarized as follows:

NAT lan lannet wan all-nets http-outbound

The code to add this rule is:

Di ctionary<string, string> properties = new Dictionary<string, string>();

properties. Add("Action", "NAT");

properties. Add(" Sour cel nterface", "lan");
properties. Add(" Sour ceNet wor k", "l annet");
properti es. Add("Destinationlnterface", "wan");

properti es. Add("Desti nati onNetwork", "all-nets");

properties. Add(" Service", "htt p-out bound");

properties. Add("LogEnabl ed", " True");

properties. Add(" Conments", "Allow NAT HTTP traffic fromLAN to WAN');
Node fol der = server. Get Node(cfg, "nmin.|PRul eSet");

server. AddChi | dNode(fol der, "IPRule", "Exanple_ Drop_Rule", properties);

Breaking the code down, let us examine the individual statements:

13

Chapter 4: Editing Configurations

First, create a new Dictionary object called properties:

properties = new Dictionary<string,string>();

We now add the various parameters to this Dictionary object instance starting with a
comment:

Define the source interface. In this case it is any network:

properties. Add(" Sour cel nterface", "lan");

The parameter name Sourcelnterface and all possible parameters for the rule can be found
under IPrule in the CorePlus CLI Reference Guide.

Define the source network. In this example it is all-nets which means it can be any network:
properties. Add(" Sour ceNet wor k", "lannet");

Define the destination interface. This could be a physical interface or perhaps a VPN tunnel
(which is treated like a physical interface). In this example we will use an interface called wan

which might be connected to the public Internet:

properties. Add("Desti nationlnterface", "wan");

Specify the destination network:

properties. Add("Desti nati onNetwork", "all-nets");

Then specify the service:

properties. Add(" Service", "http-outbound");

Enable logging on this rule so that a log message can be generated when it triggers:

properties. Add("LogEnabl ed", "true");

As the last property, add a comment to say what the rule does:

properties. Add(" Comments", "Allow NAT HTTP traffic from LAN to WAN");

In preparation for adding the rule, get the Node instance which is the main IP rule set.
Node fol der = server. Get Node(cfg, "main.|PRul eSet");

Notice how we specify the rule set by using the suffix IPRuleSet to qualify the name. If we
wanted to add a new IP rule set called, for example User-rules, we would use the code:

Node new rul eset =
server. AddChi | dNode(root, "IPRul eSet", "User-rules", null);

Finally, add this rule to the default main rule set:
server. AddChi | dNode(fol der, "IPRule", "NAT_HTTP', properties);

The NAT_HTTP parameter will be the symbolic name of the rule used in the configuration.

14

Chapter 4: Editing Configurations

The equivalent CLI command would be:

Devi ce: /> add | PRul e Name=NAT_HTTP Acti on=NAT Sour cel nt er f ace=I an
Sour ceNet wor k=| annet Desti nati onl nt er f ace=wan
Dest i nati onNet wor k=al | - net s Servi ce=htt p- out bound
LogEnabl ed=Tr ue

Again, we can see that referring to the CLI command can provide us with the correct parameters
that need to be specified when using the InControl API.

Adding an IP4 Address Folder

Let us assume we need to create a new folder called InternalServersFolder to collect together in
one place a group of IP4 addresses which are all related to internal servers. We can create the

folder with the following code:

Di cti onary<string, string> properties = new Dictionary<string, string>();
Node fol der = server. AddChi | dNode(ser ver. Cet Root Node(cf g),
" Addr essFol der", "I nt er nal Server sFol der", properties);

The Node object called folder can now be used in the next step when we add an address to it.

Let us move on to one of the more common operations performed with CorePlus configurations
which is manipulating the Address Book. This is where all the symbolic names for IP addresses
that CorePlus uses are defined along with their associated IP addresses. Some default address
book objects are defined by CorePlus, others may have to be added.

Adding an IP4 Address Object

Next, let us first look at how we add a new IP4 address object to the configuration's address
book. Let us assume we want to add a new IP for a web server with the symbolic name

webserver_ip and an IP address 70.53.95.1.

Di ctionary<string,string> properties = new Dictionary<string,string>();

properties["Address"] = "10.53.95.1";
properties["Conments"] = "Web Server Address";

server. AddChi | dNode(fol der, "IP4Address", "webserver ip", properties);

Let us examine the individual lines in this code:

First, define a new Dictionary object called properties

Di cti onary<string,string> properties = new Di ctionary<string,string>();

« Next, define the Address field of the object:

properties["Address"] = "10.53.95.1";

- Then the Comments field:

properties["Conments"] = "Web Server Address";

+ Finally, we perform the add itself.

server. AddChi | dNode(f ol der, "I P4Address", "webserver _ip", properties);

15

Chapter 4: Editing Configurations

Here, we use the Node object called folder which was defined at the beginning of this
chapter.

Let us now examine how this would be done through the CLI to see the similarity:

Devi ce: /> add Address | P4Address webserver_ip
Addr ess=10. 53. 95. 1 Comment s="\Wb Server Address"

Tip

Thinking about how an operation would be performed with the CLI can often provide a
framework for understanding how to do the same operation using the InControl API.

Changing Configuration Settings

Let us now look at changing some existing configuration settings. In this example, we will
change the current values of the settings TCPSequenceNumbers and TCPAllowReopen. The code
to do this is:

Di cti onary<string, string> properties = new Dictionary<string, string>();

properties. Add(" TCPSequenceNunbers", "lgnore");
properties. Add(" TCPAl | owReopen", "True");

Node fol der = server. Get Node(cfg, "TCPSettings");

server. Set NodeProperti es(fol der, properties);

Let us look at the individual operations in this code:
First, create a Dictionary object called properties:

Di ctionary<string, string> properties = new Dictionary<string,string>();

Add the pairs of setting names and values which are to be set:

properties. Add(" TCPSequenceNunbers", "lgnore");
properties. Add(" TCPAl | owReopen", "True");

Now get the Node object where these settings are found, in this case TCPSettings:

Node fol der = server. Get Node(cfg, "TCPSettings");

Apply the new properties to this node:

server. Set NodeProperties(fol der, properties);

In this example, the CLI Reference Guide can once again give us the correct naming for the Node
object and its individual settings. TCP Settings is listed as a node (or object) name in the guide
and all related settings are listed in that section of the guide.

16

Chapter 4: Editing Configurations

Listing Configuration Items

To list out the contents of a particular node we can use the following code to enumerate the
values and then display them on the console as a list.

f oreach(KeyVal uePair<string,string> itemin server.Get NodeProperties(node))

Consol e. WiteLine(itemKey + ":\t" + item Val ue);

Deleting Configuration Items
Deleting a node in the configuration is simple:

Server . Del et eNode(node)

The Attribute Value and Deleting Related Objects

An Attribute value can be assigned to configuration objects so that all items with a particular
value can be deleted at once. For example, the code above to add an IP rule could become:

properties = new Dictionary<string,string>();

properties. Add("Attribute", "user_A");
properties. Add(" Sour cel nterface", "any");

server . AddChi | dNode(i ncom ng, "I PRul e", "Exanple_Drop_Rule", properties);

Where the string user_A will be assigned as the Attribute for all configuration objects related to
this user.

Note

The Attribute value is not definable with the CLI. The InControl APl must be used.

17

Chapter 5: Check In and Deployment

This chapter shows how changes made to an edited configuration can be saved and then
activated.

As discussed in Chapter 3, Opening Configurations, configurations need to be checked out for
editing. After editing is complete, a configuration needs to be checked back in and/or deployed
to the Clavister Security Gateway.

The code example found in Chapter 2, Starting Coding achieves this with the code lines:

/1 Check in the new configuration

server. Checkl nConfi guration(cfg,
"Added I P rule allowing NAT LAN to WAN HTTP traffic");

/1 Activate the new configuration on the Security Gateway

server . Depl oyConf i gur ati on(sgwst ockhol nm) ;

CheckIn

A check in is a simple operation which is performed by invoking the CheckinConfiguration
method on the Server object with the: configuration as a parameter.

server. Checkl nConfi gurati on(cfg,
"Added I P rule allowing NAT LAN to WAN HTTP traffic");

The string parameter Example is a comment for the check in.

Deployment

Checking in a configuration does not mean that the changes made will come into effect on the
Clavister Security Gateway. It is necessary to deploy a configuration for it to become the active
configuration on the security gateway. Deployment is done with the following code:

server . Depl oyConf i gur ati on(sgwst ockhol m ;

Notice that the configuration is not the parameter for the DeployConfiguration method but the

Device object instance is used instead. In other words, the deployment is done for the security
gateway and the most recent version of the configuration is deployed.

18

Appendix A: Visual Studio Setup

A common development environment that may be used to create source code with the
InControl APl is Microsoft Visual Studio. This appendix discusses how to set up Visual Studio when
working with the InControl API.

The steps for Visual Studio setup are as follows:

« Create a new Visual Studio project for code development. In this case we select a Windows
Forms Application.

Mew Project

Project bypes: Templates: | MET Framework 3.5 ["]|E| E|
= Wisual C# ¥isual Studio installed templates [
Windows
Web ot = m
' 5 g o
Database I §Cﬁ: @ IL/ m _Eﬂﬁ
Reporting Windaws Class Library WPF WRF Browser Consale
WCF Forms &... Application Application Application
workflow

41 44

Cther Languages
Cther Project Types

ch.) N\ N\
“w Sa Sa
WICF Service wWindows DynamicDat,.. DynamicDat, ..
Application Forms Cont..,

My Templates

[

A project For creating an application with a ‘Windows Forms user interface (.MET Framework 3.5)

Mame: WindowsFormsapplication

Location: | Ci\Documents and SetkingsiFrmuiiy Documentsivisual Studio Projects) TestApps [v] [Browse. ..
Solution: |Create ness Solution [v] Create directory for solution

Solution Mame: WindowsFormsapplication

« Make sure the InControl server is running, is accessible and has an InControl server license
that has the InControl APl option enabled.

+ Add the InControl API as a Service in the project. Do this by selecting the Add Service
Reference option after right clicking the References tree node.

HiE EOE wWew Hroject Buld Lebug LSl lools lext [FEnsrOrmatcn workrow AnIs 4 Daka 1ools Window

AN HOREERE-N N - NN R R =R L v Ary CPU

bkl 2 LT b LS e W NEREIN R =
Solution Explorer - Solution “windowsFormsapplic.., - I 3 Forml.cs [Design]]

=Rl s

'_; Solution "WindowsFormsapplication' {1 project) o

7]

= E WindowsFormsApplication
=d| Propefties

| Add Reference. ..

Add Service Reference, ..
« 3 Syskrmooproyrmo

< Syskem.Drawing
« 3 System.Windows,Forms
“ System, xml
@ Forml.cs
Cﬁ Program.cs

« In the Add Service Reference dialog, specify the full URL address of the InControl API. The

19

Appendix A: Visual Studio Setup

address is constructed in the form net.tcp://localhost:33726/InControl. APl where localhost
should be substituted with the relevant IP address or hostname of the InControl server The
Namespace to use is called InControl. API.

Add Service Reference

To see a lisk of available services on a specific server, enter a service URL and click Go, To browse for
available services, click Discover.

Address:
|net.tcp:ll'll'I-:u:thc-st:33?26!InCnntrnI.F\PI M[G0] | [Qiscover |v]

SErvices: Operations:
= (®] RemoteServer e add
5':’ IRemateServer s iddChild
W Zanadd
9 CanDelete
S CanDisable
‘W CanEnable
9 CanMoveMode
Sy Canbndelets
W ChangeManagementkeys M

1 service(s) Found at address 'net.tep: fflocalhost: 33726/ InControl APT',

MNamespace:
InCaonkrol APT

[ok l ’ Cancel]

Visual Studio will contact the InControl server and download the relevant Web Service
Definition Language (WSDL) file which describes the API.

Make sure references to the new namespace and the System.ServiceModel is added in your
source files according to the screenshot below.

parRERRReLE | UL LS LS] 1

5 PE

pu=sing Syskem:
using System.Colleckions. Generic:
using System.ComponentModel
using Syskem.baka:
using Syskem.Drawing:;
using Syskem. Texk:
using System.Windows. Forms:

A add these for access ko AFI
using WindowsFormsApplication. InConkrol 4RI ;
using Susktem.SerwiceModel:
= namespace WindowsFormsipplicakion
i
public partial class Forml : Form
= public Forml()

InitializeComponenkl):

I private woid Conmeck()

A4 Sekup WCF communicakion
ChannelFactorysIRencbeServer> chanmelFackory = new ChannelFactoru<IRenckbeServer=(new MekTopBindi
IRemokeServer server = channelFactory. CreakeChanne]():

20

CLAVISTIE

Clavister AB

Sjogatan 6J

SE-89160 Ornsksldsvik
SWEDEN

Phone: +46-660-299200
Fax: +46-660-12250

www.clavister.com

	SDK Guide
	Table of Contents
	Preface
	Chapter 1: An SDK Overview
	Chapter 2: Starting Coding
	Chapter 3: Opening Configurations
	Chapter 4: Editing Configurations
	Chapter 5: Check In and Deployment
	Appendix A: Visual Studio Setup

